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ABSTRACT
Local microstructural heterogeneities of elastic metamaterials give rise to non-local macroscopic cross coupling between stress–strain and
momentum–velocity, known as Willis coupling. Recent advances have revealed that symmetry breaking in piezoelectric metamaterials intro-
duces an additional macroscopic cross coupling effect, termed electro-momentum coupling, linking electrical stimulus and momentum and
enabling the emergence of exotic wave phenomena characteristic of Willis materials. The electro-momentum coupling provides an extra
degree of freedom for controlling elastic wave propagation in piezoelectric composites through external electrical stimuli. In this study,
we present how to tune the electro-momentum coupling arising in 1D periodic piezoelectric metamaterials with broken inversion sym-
metry through shunting the inherent capacitance of the individual piezoelectric layers with a resistor and an inductor in series forming
a resistor–inductor–capacitor circuit. Guided by the effective elastodynamic theory and homogenization method for piezoelectric meta-
materials, we derived a closed-form expression of the electro-momentum coupling in shunted piezoelectric metamaterials. Moreover, we
demonstrate the ability to tailor the electro-momentum coupling coefficient and control the amplitudes and phases of the forward and back-
ward propagating waves, yielding tunable asymmetric wave responses. The results of our study hold promising implications for applications
involving asymmetric wave phenomena and programmable metamaterials.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0165267

Willis coupling, discovered by Willis, is a cross coupling
between the momentum and strain or velocity and stress in an
inhomogeneous elastic medium at the macroscopic level.1–3 Sub-
sequently, Milton and Willis4 established the macroscopic consti-
tutive laws for randomly inhomogeneous composite media using
a dynamic homogenization scheme to describe the relationship
between non-local effective fields that satisfy the same classical
equation of motion applicable at the microscopic level. More-
over, elastodynamic homogenization theories were further devel-
oped for laminated composites and periodic media, enabling the
derivation of exact macroscopic (Willis) constitutive laws.5–10 Con-
currently, research on elastic and acoustic metamaterials unveiled
extraordinary properties, such as negative effective mass density11

and bulk modulus,12 arising from carefully engineered heteroge-
neous microstructures of these artificial materials. Metamateri-
als lacking inversion symmetry were also found to exhibit Willis

coupling due to their inherently inhomogeneous nature. Theoreti-
cal and experimental studies on Willis metamaterials revealed exotic
wave phenomena, such as asymmetric reflections and unidirectional
transmission.13–23 Until recently, the Willis coupling had been pre-
dominantly explored in mechanical metamaterials governed solely
by mechanical forces.

In 2020, Salomón and Shmuel24 discovered a cross coupling
effect similar to Willis coupling, which occurs between the elec-
trical field and momentum in piezoelectric metamaterials. They
coined this additional form of macroscopic cross coupling as the
electro-momentum coupling and derived the effective constitutive
relations for piezoelectric composites using a source-driven dynamic
homogenization scheme. Dynamic homogenization techniques
were further employed to determine the effective properties
of a 1D layered periodic piezoelectric composite, revealing the
emergence of electro-momentum coupling in addition to the
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traditional Willis coupling. Subsequent efforts were dedicated to
maximizing the electro-momentum coupling through modifications
to the microstructure of the piezoelectric metamaterials.25–27 Pernas-
Salomón et al.28 further studied the scattering response of piezo-
electric Willis scatterers in light of the electro-momentum coupling.
However, current studies primarily explored the electro-momentum
coupling in an open circuit (i.e., zero free charge) and a short
circuit configuration of piezoelectric layers and the impact of shunt-
ing the piezoelectric metamaterial with electrical circuits remains
uninvestigated.

It is widely recognized that shunted piezoelectric materials
exhibit frequency-dependent stiffness and loss factor, which are
also dependent on the shunting circuit.29 This additional degree
of freedom provided by external electrical stimuli has rendered
piezoelectric metamaterials attractive for studies on wave control.
Unlike purely mechanical metamaterials that possess fixed func-
tionality, piezoelectric metamaterials can alter the elastodynamic
behavior by leveraging a shunting electrical impedance. The result-
ing electro-mechanical waveguide manifests an effective elastic
modulus determined by the electrical impedance of the shunting
circuit, which arises from the strain–voltage coupling inherent to
the piezoelectric effect.30 This approach has been demonstrated
in classical piezoelectric metamaterials with symmetric architec-
tures showcasing dynamic modulation of the structural response in
diverse applications pertaining to noise reduction, vibration control,
and wave manipulation.31–39

In this study, our focus centers on tailoring electro-momentum
coupling in shunted piezoelectric metamaterials through a shunting
impedance, thereby eliminating the necessity for structural
modifications. To this end, we create resonant circuits, termed
resistor–inductor–capacitor (RLC) circuits, by shunting the
inherent capacitance of the asymmetrically distributed periodic
piezoelectric layers with a series combination of a resistor and

TABLE I. Material properties of the three piezoelectric layers in the unit cell of the
piezoelectric metamaterial.24

Layer Material ρ (kg/m3) C (GPa) A (nF/m) B (C/m2)

1 PZT4 7500 115 5.6 15.1
2 BaTiO3 6020 165 0.97 3.64
3 PVDF 1780 12 0.067 −0.027

an inductor. We derive a closed-form analytical expression for
the electro-momentum coupling coefficient in a one-dimensional
piezoelectric metamaterial and investigate the resonance and damp-
ing effects induced by the RLC circuit on the electro-momentum
coupling. The resulting constitutive equation, expressed in
the stress–strain form, includes a modified electro-mechanical
elastic constant that accounts for the effect of the external
shunting impedance. The electro-momentum coupling coefficient
determined through dynamic homogenization retains a similar
form as in Ref. 24, albeit with the modified electro-mechanical elas-
tic constant that can be altered by varying shunting resistance and
inductance. In addition, we harness electro-momentum coupling to
demonstrate the tunable asymmetric wave propagation through the
piezoelectric metamaterial, achieved solely by adjusting shunting
resistance and inductance.

Consider a 1D composite of three different piezoelectric
material layers periodically repeated along the x-direction, as shown
in Fig. 1(a). The unit cell of the piezoelectric composite of total
length l = l1

p + l2
p + l3

p is depicted in Fig. 1(b), where l1
p, l2

p, and l3
p

are the individual thicknesses of the three layers. The superscript
represents the layer number of the unit cell. The layer materials
and their properties are listed in Table I, which are adopted from

FIG. 1. A 1D periodic piezoelectric metamaterial with shunt circuits. (a) The design of a three-layered piezoelectric metamaterial with periodic repetition along the x-direction.
(b) The unit cell of the periodic metamaterial structure with the piezoelectric material combination PZT4–BaTiO3–PVDF. The length of the unit cell equals the total length of
the three layers combined (l = l1p + l2p + l3p), and Ap is the transverse cross-sectional area of all layers. (c) Sketch of electrical circuits consisting of a resistor in series with
an inductor shunted across each piezoelectric layer.

APL Mater. 11, 091118 (2023); doi: 10.1063/5.0165267 11, 091118-2

© Author(s) 2023

 23 February 2024 18:16:31



APL Materials ARTICLE pubs.aip.org/aip/apm

Ref. 24 for a direct comparison of the results and validation of
the present approach. Due to the spatial periodicity, the material
properties of the 1D composite are l-periodic (i.e., periodic over
the unit cell) functions of spatial coordinate x. We introduce an
electrical circuit consisting of a resistor in series with an inductor
shunted across each piezoelectric layer along the poling direction,
as shown in Fig. 1(c). For a 1D problem, the constitutive law of
piezoelectricity for each layer can be defined using scalar fields
varying only along the x-direction as follows:

σ = Cε − BE, D = Bε + AE, (1)

where σ and ε are the longitudinal stress and strain fields, respec-
tively, and D and E are the dielectric displacement and electric fields,
respectively. The coefficients C and A are the elastic and dielectric
constants, respectively, and B is the piezoelectric coupling coeffi-
cient. Now, assuming a finite transverse cross-sectional area of Ap
for all layers, the current I flowing through an external circuit and
voltage V generated across a layer are given as

I =
∂

∂t∫Ap

D dΩw, V = ∫
lp

E dx, (2)

where Ωw is the boundary of the piezoelectric layer. Taking the
Laplace transform of the current equation with respect to time and
assuming a constant electric field throughout the layer thickness,
Eq. (2) takes the form

I = sDAp, V = Elp, (3)

where s = −iω is the Laplace transform variable and ω is the angu-
lar frequency. The circuit equation due to Kirchhoff’s voltage law
around the loop is given as follows:

V + IZ = 0, (4)

where Z is the shunting impedance, which is defined in the fre-
quency domain as Z = sL + R, for a resonant electrical circuit with
the resistance, R, and inductance, L, in a series connection. Combin-
ing Eqs. (1), (3), and (4) results in an electro-mechanical constitutive
relation as follows:

σ = [C +
sApB2Z

(sApAZ + lp)
]ε = Čε. (5)

The electro-mechanical elastic constant Č is a function of the shunt-
ing electrical circuit impedance Z that can be tuned to control the
electro-mechanical response of the piezoelectric layers. Moreover, Č
is also l-periodic like any other material properties of the piezoelec-
tric metamaterial. The Č takes the following form under different
impedance conditions:

Case 1: Short circuit, Z = 0

σ = Cε, Č = C. (6)

Case 2: Open circuit, Z →∞

σ = [C +
B2

A
]ε, Č = C +

B2

A
. (7)

Case 3: Shunting circuit, Z = sL + R

σ = [C +
sApB2

(sL + R)
(s2ApAL + sRApA + lp)

]ε,

Č = C +
sApB2

(sL + R)
(s2ApAL + sRApA + lp)

.
(8)

The constitutive relation and the corresponding electro-
mechanical elastic constant under the open circuit condition given
by Eq. (7) are the same as derived in Ref. 24 for the case of zero free
charge. However, when the piezoelectric metamaterial is shunted
through an electrical impedance, the constitutive relation is mod-
ified, as presented in Eq. (8), which incorporates the effect of the
shunting circuit with a resistor and an inductor. Unlike the open
circuit case, where the electro-mechanical elastic constant remains
fixed, the electro-mechanical elastic constant for the piezoelectric
metamaterial with a resonant shunt circuit can be tuned by con-
trolling the electrical impedance, specifically by varying the values
of R and L. This has been leveraged in classical piezoelectric meta-
materials lacking inversion symmetry, enabling the tuning of effec-
tive stiffness of the waveguides and wave properties.31–39 In this
study, our objective is to investigate electro-momentum coupling
in the asymmetrically distributed periodic layers of piezoelectric
metamaterial, which possess broken inversion symmetry. We aim
to demonstrate the remarkable tunability of electro-momentum
coupling through shunting electrical impedance. Utilizing the
dynamic homogenization approach outlined in Ref. 24, we derive an
effective constitutive relation for the 1D periodic piezoelectric
metamaterial expressed in terms of effective fields and effective
properties. See Appendix A for the expressions of effective prop-
erties. The resulting form of the constitutive relation incorporating
the modified electro-mechanical elastic constant Č can be given
as follows:

⎛
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, (9)

where p and u̇ are the linear momentum and velocity fields, respec-
tively, and ρ is the mass density. The overtilde denotes the effective
(macroscopic) properties obtained via dynamic homogenization,
and ⟨⋅⟩ represents the ensemble average of field quantities. Cross
coupling coefficients S̃ and W̃ are Willis and electro-momentum
coupling coefficients, respectively, and (⋅)† is the adjoint opera-
tor with respect to the spatial variable. The governing equations
of piezoelectricity are identically satisfied by the effective fields as
follows:

∇ ⋅ ⟨σ⟩ + f = ⟨ṗ⟩, ∇ ⋅ ⟨D⟩ = q, (10)

where f and q are the prescribed body force and free charge
densities, respectively. The electro-momentum coupling coefficient
with the external shunt circuit is calculated using the following
expression:
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W̃(ξ) =
s⟨ sApB2Z
(sApAZ+lp)
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, (11)

where G1D is the one-dimensional Green’s function, ⟨⋅⟩F denotes
the spatial Fourier transform, and ξ is the Fourier transform vari-
able. The derivations of the effective material properties are similar
to those presented earlier in Refs. 24 and 25 for the case of zero
free charge and no external electromagnetic field with an electro-
mechanical elastic constant Č given by Eq. (7). Meanwhile, when
considering a piezoelectric metamaterial shunted through an exter-
nal electrical circuit, the constitutive relation accounts for the influ-
ence of the shunting impedance on the elastic constant, as presented
in Eq. (8). This modification allows for the tuning of the effective
material properties. Hence, this closed-form solution in Eq. (11), in
conjunction with the modified elastic coefficient in Eq. (8), provides
valuable insights into tailoring the electro-momentum coupling
coefficient by tuning the resistance and inductance of the shunt-
ing circuit. Therefore, our developed generalized approach is also
applicable to piezoelectric metamaterials under short circuit (Z = 0)
and open circuit conditions (Z →∞), allowing for a comprehensive
understanding of the electro-momentum coupling coefficient and its
tunability.

We demonstrate the effect of a shunting electrical impedance
on the electro-momentum coupling coefficient for a three-layer
piezoelectric metamaterial composed of PZT4–BaTiO3–PVDF, as
depicted in Fig. 1. The configuration of the piezoelectric metama-
terial is adopted from Ref. 24, in which the analysis of electro-
momentum coupling was solely conducted under the open circuit
condition, corresponding to zero free charge. The layer thicknesses
are chosen l1

p = 1 mm, l2
p = 1.4 mm, and l3

p = 0.6 mm. The trans-
verse cross-sectional area Ap of the layers is set to 1 mm2. The
electro-momentum coupling coefficient multiplied with the effec-
tive piezoelectric coupling coefficient B̃ and divided by the effective
dielectric constant Ã in the long-wavelength limit (i.e., ξl = 0) is plot-
ted in Fig. 2 in the first phonon band frequencies of the periodic
metamaterial with an inductance of 1H and resistance varying in the
range R = 0–5000 kΩ for all layers (i.e., L1 = L2 = L3 = 1H, R1 = R2
= R3 = R). Note that, instead of plotting W̃, we plot the coupling
term B̃W̃/Ã as it combines with the Willis coupling S̃ where the
combined term B̃W̃/Ã + S̃ is responsible for the asymmetric wave
propagation through the piezoelectric metamaterial as shown via
the plane wave analysis28 presented in Appendix B. The tailoring
of S̃ and B̃W̃/Ã + S̃ terms with the shunt impedance circuit is fur-
ther discussed in Appendix C. Thus, the tailoring of Willis and
electro-momentum couplings can be directly correlated with the
asymmetric wave propagation studied using finite element simula-
tions later in this paper. The inherent capacitance of the piezoelectric
layers shunted through a resistor and an inductor in series forms
an RLC resonant circuit. The electrical resonance creates local res-
onance bandgaps in the dispersion band structure of the periodic
metamaterial introducing large dispersion variations in the vicinity

FIG. 2. Tailoring of electro-momentum coupling in the long-wavelength limit
(ξl = 0). (a) The imaginary part and (b) the real part of the coupling term
B̃W̃/Ã for the 1D piezoelectric metamaterial of composition PZT4–BaTiO3–PVDF
(l1p = 1 mm, l2p = 1.4 mm, and l3p = 0.6 mm) with shunt circuit inductance L1 = L2
= L3 = 1H and resistance R1 = R2 = R3 = R.

of the bandgaps. See Appendix D for the detailed band struc-
ture calculation performed via the transfer matrix approach. The
capacitance of the piezoelectric layer is defined as Cp = AAp/lp, and
the RLC resonance frequency of the electrical circuit is given by
(2π
√

LCp)
−1

.
Figure 2(a) shows that the imaginary part of the coupling term

B̃W̃/Ã reaches its peak near the RLC-resonant frequencies of lay-
ers 1 and 2, indicated by horizontal dotted lines at f1 = 0.067 MHz
and f2 = 0.19 MHz, respectively. The resonant frequency of layer 3
lies beyond the first phonon band at f = 0.47 MHz; thus, it does not
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appear in the plot. Nevertheless, shunting the piezoelectric metama-
terial to a resonant electrical circuit induces a significant variation
in the electro-momentum coupling coefficient in the vicinity of the
RLC-resonant frequencies of the first two layers. For the current
design, the variation is higher near the resonant frequency of layer
2. The variation in the coupling term depends on the combined
effect of the geometrical and material properties of the piezoelectric
layer and the shunt impedance circuit connected to the layer. Nev-
ertheless, the degree of perturbation due to each shunted layer can
be controlled by controlling its thickness and the impedance in the
shunt circuit. The resonant frequency, determined by the inductor
in the RLC circuit, can be tuned to target specific phonon bands and
enable tailoring of the electro-momentum coupling in the desired
range. Moreover, the resistor in the RLC circuit provides a means
of energy dissipation on the electrical side, influencing the variation
in the electro-momentum coupling coefficient. Figure 2(a) presents
that increased resistance values lead to a reduced perturbation of the
coupling term B̃W̃/Ã, ultimately converging to the open circuit con-
dition at the highest resistance. In the quasi-static limit (ω→ 0), the
electro-momentum coupling vanishes regardless of the external cir-
cuit parameters as the real and imaginary parts of W̃ approach zero.
The real part of B̃W̃/Ã exhibits significant frequency-dependent
variations for finite resistance values, peaking near the RLC-resonant
frequencies, as shown in Fig. 2(b). However, it remains zero at all
frequencies for the limiting cases of R = 0 and R→∞ (i.e., open cir-
cuit). As discussed in Ref. 24, the imaginary part of W̃ originates
from the broken inversion symmetry of the microstructure and the
real part results from the mesoscale effects of multiple scattering
observed beyond the long-wavelength limit. Our results reveal that
damping introduces a perturbation to the real part of W̃ even in the
long-wavelength limit.

Meanwhile, in a microstructure with inversion symmetry, the
imaginary part of W̃ vanishes at all frequencies for the open
circuit case and the real part becomes non-zero beyond long-
wavelength and quasi-static limits. This behavior is demonstrated
by setting the layer thickness of the middle (BaTiO3) layer of the
unit cell equal to (l2

p = 0), resulting in a bi-layer (PZT4–PVDF)
piezoelectric metamaterial with layer thicknesses (l1

p = l3
p = 1.5 mm).

The electro-momentum coupling coefficient multiplied with the
effective piezoelectric coupling coefficient B̃ and divided by the
effective dielectric constant Ã is plotted in Fig. 3 for this periodic
metamaterial with inversion symmetry above the long-wavelength
limit (ξl = 2), considering the first phonon band frequencies. The
inductance values are set to 1H for layer 1 (PZT4) and 10H for
layer 3 (PVDF), with resistance in the range R = 0–5000 kΩ for
both layers (i.e., L1 = 1H, L3 = 10H, R1 = R3 = R). The imaginary
part of B̃W̃/Ã is zero at all frequencies for R→∞ (open cir-
cuit) due to the absence of broken inversion symmetry. However,
damping introduces a perturbation to the imaginary part, as shown
in Fig. 3(a), similar to the behavior observed in the real part, as
depicted in Fig. 2(b). Meanwhile, the real part of B̃W̃/Ã is non-
zero for f > 0 in the case of R = 0 and R→∞ (open circuit),
exhibiting significant variations in the vicinity of the RLC reso-
nance frequency of layer 1 for finite resistance values, as illustrated
in Fig. 3(b). There is also a slight variation near the RLC-resonant
frequency of layer 3, which falls within the first phonon band.
However, this variation is relatively weak due to the lower value of
the piezoelectric coupling coefficient of PVDF compared to other

FIG. 3. Tailoring of electro-momentum coupling above the long-wavelength limit
(ξl = 2). (a) The imaginary part and (b) the real part of the coupling term B̃W̃/Ã
for the 1D piezoelectric metamaterial of composition PZT4–PVDF (l1p = 1.5 mm,
l2p = 0 mm, and l3p = 1.5 mm) with shunt circuit inductances L1 = 1H and L3 = 10H
and resistance R1 = R3 = R.

layers. Nevertheless, it is shown that the electro-momentum cou-
pling coefficient in piezoelectric metamaterials with inversion sym-
metry can be tuned beyond the long-wavelength limit by an external
impedance circuit through RLC resonance and shunt resistance
damping.

Asymmetric wave propagation is a prominent consequence
of Willis and electro-momentum couplings. The plane wave
impedance of the homogenized 1D piezoelectric metamaterial com-
puted using the effective fields and material properties is asym-
metric for the forward and backward wave propagation because
of the coupling term B̃W̃/Ã + S̃ (see Appendix B). We demon-
strate that Willis and electro-momentum couplings can be tailored
using external shunt impedance (see Fig. 2 and Appendix C),
thus tailoring the asymmetric part of the plane wave impedance.
Hence, asymmetric wave propagation, resulting from asymme-
try in the plane wave impedance, can be tuned with the exter-
nal shunt impedance circuit. To demonstrate tunable asymmetric
wave propagation, we utilize an aluminum rod hosting a five-
unit cell long piezoelectric metamaterial rod with shunting circuits,
as depicted in Fig. 4(a). The unit cell of the piezoelectric
metamaterial consists of PZT4–BaTiO3–PVDF layers with layer
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thicknesses l1
p = 1 mm, l2

p = 1.4 mm, and l3
p = 0.6 mm. Each

layer is shunted through a resonant circuit with an inductance of
L1 = L2 = L3 = 1H and a resistance of R1 = R2 = R3 = R, where R is
varied from 0 to 5000 kΩ. The wave propagation is analyzed by
performing frequency-domain numerical simulations in COMSOL
Multiphysics. Perfectly matched layers (PMLs) are implemented at
both ends of the aluminum rod for zero wave reflections from
boundaries. Longitudinal plane waves are excited in the forward and
backward directions by applying a uniform displacement along the
x-direction at the left and right end-faces of the rod, respectively.
The steady-state frequency domain waveforms are analyzed to cal-
culate the reflection (r) and transmission (t) ratios for forward and
backward wave incidences for the first phonon band frequencies of
the periodic metamaterial. The phase and amplitude of the reflec-
tion ratio for forward and backward wave propagation are plotted in
Figs. 4(b) and 4(c), respectively, for the selected value of R = 100 kΩ,
which demonstrates a strong electro-momentum and Willis cou-
plings. An asymmetric wave behavior is clearly observed in the phase
and amplitude profiles of the reflection ratio, exhibiting different
trends for forward and backward propagating waves. Furthermore,
the absolute difference in the phase and amplitude of the reflec-
tion ratio for forward and backward wave propagation is plotted in
Figs. 4(d) and 4(e), respectively, for R = 100 to 5000 kΩ. As expected,

the amplitudes and phases of the transmission ratio for forward and
backward wave incidence remain identical for all cases and are plot-
ted in Appendix E along with the reflection ratio plots for multiple
values of R.

The phase profile of the forward and backward reflected waves
exhibits an asymmetric nature, which is a characteristic feature of
Willis coupling resulting from the asymmetric microstructure of the
unit cell. The shunting electrical impedance further modulates the
difference in the phases of reflected waves by perturbating the values
of the electro-momentum and Willis coupling coefficients through
(i) the loss factor, which can be tuned by resistance in the elec-
trical circuit (refer to Fig. 2 and Appendix C), and (ii) the RLC
resonance, which can be tuned by inductance. The changes in the
asymmetric phase profile follow a similar pattern as the coupling
term B̃W̃/Ã + S̃, as evident from the plots in Fig. 4(d). A signifi-
cant variation in the asymmetric phase is achieved by controlling the
energy dissipation due to resistance, particularly in the broadband
low-frequency region below 0.05 MHz and in the vicinity of local
resonance bandgaps. The variation is most pronounced in the case of
a pure RLC resonant circuit with zero resistance, while the asymmet-
ric phase profile converges to the open circuit case for high resistance
values (e.g., R = 5000 kΩ). Meanwhile, there is no asymmetry in the
amplitudes of the reflected waves for the open circuit case and the

FIG. 4. Asymmetric wave propagation due to Willis and electro-momentum couplings. (a) A five-unit cell long piezoelectric metamaterial rod of composition
PZT4–BaTiO3–PVDF (l1p = 1 mm, l2p = 1.4 mm, and l3p = 0.6 mm) with shunt circuit inductance L1 = L2 = L3 = 1H and resistance R1 = R2 = R3 = R embedded in an
aluminum rod. (b) The phase of reflection ratio and (c) the amplitude of reflection ratio for forward and backward wave propagation with R = 100 kΩ. The absolute difference
in (d) the phase of reflection ratio and (e) the amplitude of reflection ratio for forward and backward wave propagation. The forward (backward) reflection and transmission
ratios are denoted by r f (rb) and t f (tb), respectively.
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FIG. 5. Tunable asymmetric wave propagation by varying the inductance. (a) The real part of the coupling term B̃W̃/Ã for the 1D piezoelectric metamaterial of composition
PZT4–BaTiO3–PVDF (l1p = 1 mm, l2p = 1.4 mm, and l3p = 0.6 mm) with two different combinations of shunt circuit inductance (L1 = L2 = L3 = 1H) and (L1 = 0.75H, L2 = 1.5H,
and L3 = 4.5H) for a fixed resistance of R1 = R2 = R3 = 100 kΩ. (b) The phase of reflection ratio and (c) the amplitude of reflection ratio for forward and backward wave
propagation for the two different sets of inductances.

case of zero resistance, as observed from the asymmetric amplitude
plotted in Fig. 4(e). However, finite resistance in the shunt circuit
induces electrical damping and leads to asymmetric wave amplitudes
of the forward and backward reflected waves, where the asymmet-
ric amplitude is inversely proportional to the resistance values. This
observation is analogous to the asymmetric wave amplitude previ-
ously reported in the Willis metamaterial beam due to damping.20

The asymmetric amplitudes of reflected waves arise from the real
part of the Willis coupling coefficient, which is zero for lossless
media. In piezoelectric metamaterials, damping due to the shunt
circuit results in a complex electro-momentum coupling coefficient
with a non-zero real part. Hence, with electrical damping, the per-
turbation of the asymmetric wave amplitude follows similar trends
as the perturbation of the real part of the coupling term B̃W̃/Ã
[see Fig. 2(b)]. The asymmetric wave amplitude peaks near the local
resonance bandgaps, with sharp peaks observed for low resistance
values, while it spreads over the broader frequency range with low
amplitudes for high resistance values. Nevertheless, damping in
the resonant shunt introduces an additional asymmetry in the
wave amplitudes of the reflected waves, which can be tailored by
controlling the resistance in the circuit. Furthermore, asymmet-
ric wave propagation can be selectively tailored at specific fre-
quencies by tuning the inductance, which controls the RLC reso-
nance frequency. This has been showcased by setting the induc-
tance values in the resonant shunts as L1 = 0.75H, L2 = 1.5H, and
L3 = 4.5H (R = 100 kΩ). Figure 5(a) shows that varying induc-
tance values shift the peak value of coupling term B̃W̃/Ã to the
resonant frequencies of individual shunts, resulting in the tai-
loring of the asymmetric wave behavior as shown in Figs. 5(b)
and 5(c). Both resistance and inductance values can be fur-
ther optimized to modulate the electro-momentum coupling and
obtain the desired wave properties in the shunted piezoelectric
metamaterials.

In this study, we introduced a generalized methodology
for analyzing electro-momentum coupling in shunted piezoelec-
tric metamaterials, offering an innovative approach to tailor the
electro-momentum coupling coefficient without requiring any
structural modifications. By shunting the inherent capacitance of
the piezoelectric layers with a series combination of a resistor
and an inductor, we have created resonant shunts that profoundly
affect the electro-momentum coupling coefficient in the proxim-
ity of the locally resonant bandgap frequencies as a result of the
electrical resonance, which can be tuned by the inductor in the cir-
cuit. Moreover, the resistor in the shunt circuit provides electrical
damping, thereby exerting control over the amplitude of perturba-
tion. Our investigations have revealed that damping also perturbs
the otherwise vanishing real and imaginary parts of the electro-
momentum coupling coefficient in the long-wavelength limit and
in the absence of broken inversion symmetry, respectively. Fur-
thermore, through tailoring the effective coupling coefficients using
shunting impedance, we have demonstrated the ability to create and
manipulate asymmetric wave propagation within the piezoelectric
metamaterial, resulting in remarkable phenomena, such as tunable
asymmetric phases and amplitudes of forward and backward prop-
agating waves. In conclusion, our work provides valuable insights
into the manipulation of electro-momentum coupling in shunted
piezoelectric metamaterials, highlighting the feasibility of achiev-
ing tailored wave phenomena and paving the way for advancements
in the design of next-generation metasurfaces and programmable
metamaterials with enhanced functionalities.
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APPENDIX A: EXPRESSIONS FOR EFFECTIVE
PROPERTIES OF PIEZOELECTRIC METAMATERIALS
WITH RESONANT SHUNTS

The effective properties in the effective constitutive law are
obtained following a dynamic homogenization scheme presented
in Ref. 24. Note that Green’s function for the present problem is
1D, and the superscript is dropped hereafter. Similarly, the sub-
script F for the Fourier transformed variables is dropped in the
below-mentioned expressions. For piezoelectric metamaterials with
resonant shunt, the constitutive relations are given as follows:

σ = [C +
sApB2Z

(sApAZ + lp)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Č

ε,

E = −
sApBZ

(sApAZ + lp)
ε,

(A1)

and hence, the ensemble averages of the above-mentioned equations
are

⟨σ⟩ = ⟨Čε⟩,

⟨E⟩ = −⟨
sApBZ

(sApAZ + lp)
ε⟩.

(A2)

In addition, from the effective constitutive relation [Eq. (9)], we have

⟨σ⟩ = (C̃ +
B̃ †B̃

Ã
)⟨ε⟩ + (S̃ +

B̃ †W̃
Ã
)⟨su⟩ −

B̃ †

Ã
⟨D⟩,

⟨E⟩ =
1
Ã
⟨D⟩ −

B̃
Ã
⟨ε⟩ −

W̃
Ã
⟨su⟩.

(A3)

Now, substituting the expression of u obtained using Green’s
function,24

u = (G⟨G⟩−1
⟨G,x′ Č(x

′
)⟩ −G,x′ Č(x

′
))⟨ε⟩

+ (G⟨G⟩−1
⟨Gρ(x′)⟩ −Gρ(x′))s2

⟨u⟩ + ⟨u⟩, (A4)

in Eq. (A2) and comparing it with Eq. (A3), we get from ⟨σ⟩

C̃ +
B̃ †B̃

Ã
= ⟨Č⟩ + ⟨ČG,x⟩⟨G⟩−1

⟨G,x′ Č(x
′
)⟩ − ⟨ČG,xx′ Č(x

′
)⟩,

S̃ = s⟨CG,x⟩⟨G⟩−1
⟨Gρ(x′)⟩ − s⟨CG,xρ(x′)⟩,

B̃ †W̃
Ã
= s⟨

sApB2Z
(sApAZ + lp)

G,x⟩⟨G⟩−1
⟨Gρ(x′)⟩

− s⟨
sApB2Z

(sApAZ + lp)
G,xρ(x′)⟩ (A5)

such that ⟨D⟩ = 0, and from ⟨E⟩, we obtain

B̃
Ã
= ⟨

sApBZ
(sApAZ + lp)

⟩ − ⟨
sApBZ

(sApAZ + lp)
G,xx′ Č(x

′
)⟩

+ ⟨
sApBZ

(sApAZ + lp)
G,x⟩⟨G⟩−1

⟨G,x′ Č(x
′
)⟩,

W̃
Ã
= s⟨

sApBZ
(sApAZ + lp)

G,x⟩⟨G⟩−1
⟨Gρ(x′)⟩

− s⟨
sApBZ

(sApAZ + lp)
G,xρ(x′)⟩.

(A6)

The expression for the electro-momentum coupling coefficient pre-
sented by Eq. (11) is obtained by combining Eqs. (A5) and (A6),
where B̃ = B̃ † is enforced. The expressions for effective properties
are similar to those obtained by Salomón and Shmuel24 but with a
modified electro-mechanical elastic constant Č.

APPENDIX B: PLANE WAVE ANALYSIS

Combining the effective constitutive relations [Eq. (9)] and
equation of motion [Eq. (10)] results in the following:

(C̃ +
B̃ 2

Ã
)⟨u⟩,xx − (ρ̃ +

W̃ 2

Ã
)⟨u⟩,tt = 0, (B1)

since the average dielectric field is zero over a unit cell (⟨D⟩ = 0)
for the individually shunted piezoelectric layers. The above-
mentioned equation has a plane wave solution of the form ⟨u⟩(x, t)
= Uei(±k̃ Dx−ωt) with the wavenumber k̃D = ω/ṽD and the phase veloc-
ity ṽ2

D = C̃D/ρ̃D, where C̃D = C̃ + B̃ 2
/Ã and ρ̃D = ρ̃ + W̃ 2

/Ã. Substi-
tuting the plane wave solution in the constitutive equation, the
effective stress field is given as

⟨σ⟩ = ik̃DC̃⟨u⟩ + ik̃D
B̃ 2

Ã
⟨u⟩ − iω

W̃B̃
Ã
⟨u⟩ − iωS̃⟨u⟩. (B2)

The characteristic plane wave impedance is

Z± =
⟨σ⟩
−iω⟨u⟩

= (±1 + χD)Z̃D,

Z̃2
D = ρ̃DC̃D,

χD =
1

Z̃D
(

W̃B̃
Ã
+ S̃),

(B3)

where the superscript sign for Z designates the wave propaga-
tion direction and χD is the asymmetry factor that includes Willis
and electro-momentum coupling coefficients. The asymmetry fac-
tor represents the asymmetric wave propagation in the forward and
backward directions.
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FIG. 6. Tailoring of Willis coupling coefficient in the long-wavelength limit (ξl = 0).
(a) The imaginary part and (b) the real part of the Willis coupling coefficient for the
1D piezoelectric metamaterial of composition PZT4–BaTiO3–PVDF (l1p = 1 mm,
l2p = 1.4 mm, and l3p = 0.6 mm) with shunt circuit inductance L1 = L2 = L3 = 1H
and resistance R1 = R2 = R3 = R.

APPENDIX C: ASYMMETRIC SCATTERING DUE
TO WILLIS AND ELECTRO-MOMENTUM COUPLINGS

The plane wave analysis shows that the Willis and electro-
momentum couplings are responsible for asymmetric wave propa-
gation through the piezoelectric metamaterial. The external shunt
circuits connected across the piezoelectric layers affect both cou-
plings. The Willis coupling coefficient of the three-layer piezoelectric
metamaterial (PZT4–BaTiO3–PVDF) with the shunt impedance cir-
cuits is depicted in Fig. 6. The tailoring of Willis coupling with the
external shunt impedance circuit follows similar trends as the tai-
loring of electro-momentum coupling discussed earlier in this paper
(see Fig. 2).

In the long-wavelength limit, the Willis coupling coefficient is
purely imaginary under open circuit conditions, whereas the shunt
impedance circuit results in a perturbation of the coupling coeffi-
cient with a significant variation in the vicinity of the RLC-resonant
frequencies of the first two layers. The perturbation of the imaginary
part of S̃ is the maximum for purely inductive shunt (R = 0 kΩ). It
decreases with an increasing resistance value to converge to the open
circuit case for high resistance (R = 5000 kΩ), as shown in Fig. 6(a).

FIG. 7. Combined effect of Willis and electro-momentum couplings in the long-
wavelength limit (ξl = 0). (a) The imaginary part and (b) the real part of the
combined coupling term for the 1D piezoelectric metamaterial of composition
PZT4–BaTiO3–PVDF (l1p = 1 mm, l2p = 1.4 mm, and l3p = 0.6 mm) with shunt circuit
inductance L1 = L2 = L3 = 1H and resistance R1 = R2 = R3 = R.

Meanwhile, a purely inductive circuit does not affect the real part
of S̃. Still, it follows a similar trend as the imaginary part for finite
resistance values where the perturbation decreases from low to high
resistance values, eventually converging to the open circuit case, as
shown in Fig. 6(b). The combined contribution of both the couplings
to the plane wave impedance is shown in Fig. 7, which is responsi-
ble for the asymmetry in wave propagation through the piezoelectric
metamaterial.

APPENDIX D: DISPERSION BAND STRUCTURE
OF PIEZOELECTRIC METAMATERIAL
WITH RESONANT SHUNTS

The dispersion band structure of the piezoelectric metamate-
rial is obtained using the standard transfer matrix method.24 The
electro-mechanical constitutive relation of shunted piezoelectric lay-
ers is used to define the displacement and stress continuity at the
interfaces of different layers in the unit cell. The dispersion band
structure is obtained for the Bloch wavevectors (kb) lying in the first
Brillouin zone ranging from 0 to π/l, where l is the total length of the
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unit cell. The governing equation of motion for piezoelectric layers
connected to a shunt impedance circuit is given as follows:

Č(u,xx − η,x) − s2ρu = − f , (D1)

where u is the displacement along the x-direction and η is an inelas-
tic strain. The phase-wise solution of Eq. (D1) can be written as
follows for the three layers of the unit cell:

u(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

a1 cos (k1x) + b1 sin (k1x), x ∈ layer1,

a2 cos (k2x) + b2 sin (k2x), x ∈ layer2,

a3 cos (k3x) + b3 sin (k3x), x ∈ layer3,

(D2)

where ai’s and bi’s are integration constants and ki = ω
√

ρi/Či for
i = 1, 2, 3. Applying displacement and stress continuity at the inter-
faces of the layers and employing Floquet–Bloch periodic boundary
conditions at the unit cell edges results in an eigenvalue problem.
The displacements and stresses at the ends of each layer are related
via a transfer matrix given by

Ti =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos (kilip)
sin (kilip)

Čiki

−Čiki sin (kilip) cos (kilip)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(D3)

such that the displacement and stress in a single layer are related as
follows:

⎛
⎜
⎝

ui(xR
i )

σi(xR
i )

⎞
⎟
⎠
= Ti

⎛
⎜
⎝

ui(xL
i )

σi(xL
i )

⎞
⎟
⎠

, (D4)

where xL
i and xR

i are the left and right end coordinates, respec-
tively, of the ith layer. Furthermore, the continuity conditions at the
interface between two neighboring layers require that

⎛
⎜
⎝

ui(xR
i )

σi(xR
i )

⎞
⎟
⎠
=
⎛
⎜
⎝

ui(xL
i+1)

σi(xL
i+1)

⎞
⎟
⎠

. (D5)

Thus, the displacements and stresses at the ends of the unit cell
are related by a combined transfer matrix of the three piezoelectric
layers as follows:

⎛
⎜
⎝

u3(xR
3 )

σ3(xR
3 )

⎞
⎟
⎠
= Tuc

⎛
⎜
⎝

u1(xL
1)

σ1(xL
1)

⎞
⎟
⎠

, Tuc = T3T2T1. (D6)

The displacements and stresses at the ends of the unit cell are also
related via Floquet–Bloch periodicity using the Bloch wavevector
kb as follows:

⎛
⎜
⎝

u3(xR
3 )

σ3(xR
3 )

⎞
⎟
⎠
= exp (ikbl)

⎛
⎜
⎝

u1(xL
1)

σ1(xL
1)

⎞
⎟
⎠

. (D7)

Combining Eqs. (D6) and (D7) results in an eigenvalue problem

(Tuc − exp (ikbl)I)
⎛
⎜
⎝

u1(xL
1)

σ1(xL
1)

⎞
⎟
⎠
= 0. (D8)

The dispersion band structure is obtained by solving the eigen-
value problem for Bloch wavevectors in the first Brillouin zone,
as shown in Fig. 8. The eigenvectors are used to determine the
integration constants ai’s and bi’s in Eq. (D2) such that the phase-
wise solutions can be used to calculate the effective properties. The
band structures of the piezoelectric metamaterial of composition
PZT4–BaTiO3–PVDF (l1

p = 1 mm, l2
p = 1.4 mm, and l3

p = 0.6 mm)

FIG. 8. Dispersion band structure of the piezoelectric metamaterials with local resonance bandgaps. (a) Dispersion band structure of the piezoelectric metamaterial of
composition PZT4–BaTiO3–PVDF (l1p = 1 mm, l2p = 1.4 mm, and l3p = 0.6 mm) with shunt circuit inductance L1 = L2 = L3 = 1H and resistance R1 = R2 = R3 = R. (b)
Dispersion band structure of the piezoelectric metamaterial of composition PZT4–PVDF (l1p = 1.5 mm, l2p = 0 mm, and l3p = 1.5 mm) with shunt circuit inductances L1 = 1H
and L3 = 10H and resistance R1 = R3 = R. Note that the solid lines represent the real part and the dotted lines represent the imaginary part of the wavevector.
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FIG. 9. Reflection ratio amplitudes and phases for wave propagation through the finite piezoelectric rod. The reflection ratio amplitudes for forward and backward wave
propagation for (a) R = 0 kΩ, (b) R = 100 kΩ, (c) R = 500 kΩ, and (d) open circuit case. The reflection ratio phases for forward and backward wave propagation for (e)
R = 0 kΩ, (f) R = 100 kΩ, (g) R = 500 kΩ, and (h) open circuit case.

with shunt circuit inductance L1 = L2 = L3 = 1H and resistance
R1 = R2 = R3 = R are shown in Fig. 8(a) depicting the local resonance
bandgaps formed by the RLC circuit for different resistance values.
The RLC resonance frequency of layer 3 lies beyond the first dis-
persion branch in the Bragg bandgap. Note that the local resonance
creates a dispersion variation near the local resonance frequency
as depicted in the inset of Fig. 8(a). Similarly, the band struc-
tures of the piezoelectric metamaterial of composition PZT4–PVDF
(l1

p = 1.5 mm, l2
p = 0 mm, and l3

p = 1.5 mm) with shunt circuit induc-
tances L1 = 1H and L3 = 10H and resistance R1 = R3 = R are shown
in Fig. 8(b). In this case, only two resonance bandgaps appear, of
which both are in the first dispersion band. For both cases, the local
resonance bandgaps created by the RLC circuit of layer 3 are very
narrow and thus have a very small effect on the electro-momentum
coupling coefficient. Hence, only a small variation is observed
in the electro-momentum coupling coefficient of the piezoelectric

metamaterial of composition PZT4–PVDF, as depicted in Fig. 3.
In contrast, a significant dispersion variation due to the first RLC
resonance bandgap is depicted in the inset of Fig. 8(b), as a result
of which a large variation is observed in the electro-momentum
coupling coefficient in the vicinity of RLC resonance frequency of
layer 1.

APPENDIX E: REFLECTION AND TRANSMISSION
RATIOS FOR FORWARD AND BACKWARD WAVE
PROPAGATION

Asymmetric wave propagation in a five-unit cell long piezo-
electric metamaterial with resonant circuits shunted to each layer
is studied in this paper. We present the reflection and transmission
ratios for various shunt resistance values here. The results demon-
strate the presence of asymmetry in the reflected waves for the
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FIG. 10. Transmission ratio amplitudes and phases for wave propagation through the finite piezoelectric rod. The transmission ratio amplitudes for forward and backward
wave propagation for (a) R = 0 kΩ, (b) R = 100 kΩ, (c) R = 500 kΩ, and (d) open circuit case. The transmission ratio phases for forward and backward wave propagation
for (e) R = 0 kΩ, (f) R = 100 kΩ, (g) R = 500 kΩ, and (h) open circuit case.

forward and backward wave propagation, as shown in Fig. 9. More-
over, the phases of the reflection ratio exhibit asymmetry across all
shunt circuit conditions, ranging from zero resistance to open cir-
cuit cases. However, the asymmetry in the amplitude of reflection
ratios is only observed for finite resistance values. Notably, the asym-
metry in the amplitudes and phases of the reflected waves exhibits
a variation in the vicinity of the RLC resonance frequencies of the
shunt circuits, indicating the tunability of asymmetric wave propa-
gation through external control of impedance in the shunt circuit.
While asymmetry arises in the reflected waves, the amplitudes and
phases of the transmission ratio, as depicted in Fig. 10, remain iden-
tical for forward and backward wave propagation, regardless of the
shunt circuit parameters. Although the amplitudes and phases of
the transmitted waves vary with the shunt impedances, they main-
tain identical values at all frequencies for forward and backward
propagating waves.

REFERENCES
1J. Willis, Variational and Related Methods for the Overall Properties of Composites
(Elsevier, 1981), pp. 1–78.
2J. Willis, “Variational principles for dynamic problems for inhomogeneous
elastic media,” Wave Motion 3, 1–11 (1981).
3J. R. Willis, “Dynamics of composites,” in Continuum Micromechanics (Springer
Vienna, Vienna, 1997), pp. 265–290.
4G. W. Milton and J. R. Willis, “On modifications of Newton’s second
law and linear continuum elastodynamics,” Proc. R. Soc. A 463, 855–880
(2007).
5J. Willis, “Exact effective relations for dynamics of a laminated body,” Mech.
Mater. 41, 385–393 (2009), the Special Issue in Honor of Graeme W. Milton.
6J. R. Willis, “Effective constitutive relations for waves in composites and
metamaterials,” Proc. R. Soc. A 467, 1865–1879 (2011).
7S. Nemat-Nasser and A. Srivastava, “Overall dynamic constitutive rela-
tions of layered elastic composites,” J. Mech. Phys. Solids 59, 1953–1965
(2011).

APL Mater. 11, 091118 (2023); doi: 10.1063/5.0165267 11, 091118-12

© Author(s) 2023

 23 February 2024 18:16:31



APL Materials ARTICLE pubs.aip.org/aip/apm

8A. L. Shuvalov, A. A. Kutsenko, A. N. Norris, and O. Poncelet, “Effective Willis
constitutive equations for periodically stratified anisotropic elastic media,” Proc.
R. Soc. A 467, 1749–1769 (2011).
9A. N. Norris, A. L. Shuvalov, and A. A. Kutsenko, “Analytical formulation of
three-dimensional dynamic homogenization for periodic elastic systems,” Proc.
R. Soc. A 468, 1629–1651 (2012).
10A. Srivastava and S. Nemat-Nasser, “Overall dynamic properties of three-
dimensional periodic elastic composites,” Proc. R. Soc. A 468, 269–287 (2012).
11Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally
resonant sonic materials,” Science 289, 1734–1736 (2000).
12N. X. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang,
“Ultrasonic metamaterials with negative modulus,” Nat. Mater. 5, 452–456 (2006).
13H. Nassar, Q.-C. He, and N. Auffray, “Willis elastodynamic homogenization
theory revisited for periodic media,” J. Mech. Phys. Solids 77, 158–178 (2015).
14M. B. Muhlestein and M. R. Haberman, “A micromechanical approach for
homogenization of elastic metamaterials with dynamic microstructure,” Proc. R.
Soc. A 472, 20160438 (2016).
15H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, and G. L. Huang, “Non-
reciprocal wave propagation in modulated elastic metamaterials,” Proc. R. Soc. A
473, 20170188 (2017).
16C. F. Sieck, A. Alù, and M. R. Haberman, “Origins of Willis coupling
and acoustic bianisotropy in acoustic metamaterials through source-driven
homogenization,” Phys. Rev. B 96, 104303 (2017).
17M. B. Muhlestein, C. F. Sieck, P. S. Wilson, and M. R. Haberman, “Experimental
evidence of Willis coupling in a one-dimensional effective material element,” Nat.
Commun. 8, 15625 (2017).
18S. Meng and B. B. Guzina, “On the dynamic homogenization of periodic media:
Willis’ approach versus two-scale paradigm,” Proc. R. Soc. A 474, 20170638
(2018).
19A. Merkel, V. Romero-García, J.-P. Groby, J. Li, and J. Christensen,
“Unidirectional zero sonic reflection in passive 𝒫𝒯 -symmetric Willis media,”
Phys. Rev. B 98, 201102 (2018).
20Y. Liu, Z. Liang, J. Zhu, L. Xia, O. Mondain-Monval, T. Brunet, A. Alù, and J.
Li, “Willis metamaterial on a structured beam,” Phys. Rev. X 9, 011040 (2019).
21L. Quan, D. L. Sounas, and A. Alù, “Nonreciprocal Willis coupling in zero-index
moving media,” Phys. Rev. Lett. 123, 064301 (2019).
22Y. Zhai, H.-S. Kwon, and B.-I. Popa, “Active Willis metamaterials for
ultracompact nonreciprocal linear acoustic devices,” Phys. Rev. B 99, 220301
(2019).
23R. Pernas-Salomón and G. Shmuel, “Fundamental principles for generalized
Willis metamaterials,” Phys. Rev. Appl. 14, 064005 (2020).
24R. Pernas-Salomón and G. Shmuel, “Symmetry breaking creates electro-
momentum coupling in piezoelectric metamaterials,” J. Mech. Phys. Solids 134,
103770 (2020).

25Z. Zhang, J.-H. Lee, and G. X. Gu, “Rational design of piezoelectric metamate-
rials with tailored electro-momentum coupling,” Extreme Mech. Lett. 55, 101785
(2022).
26J.-H. Lee, Z. Zhang, and G. X. Gu, “Maximum electro-momentum cou-
pling in piezoelectric metamaterial scatterers,” J. Appl. Phys. 132, 125108
(2022).
27H. D. Huynh, X. Zhuang, H. S. Park, S. Nanthakumar, Y. Jin, and T.
Rabczuk, “Maximizing electro-momentum coupling in generalized 2d Willis
metamaterials,” Extreme Mech. Lett. 61, 101981 (2023).
28R. Pernas-Salomón, M. R. Haberman, A. N. Norris, and G. Shmuel, “The elec-
tromomentum effect in piezoelectric Willis scatterers,” Wave Motion 106, 102797
(2021).
29N. Hagood and A. von Flotow, “Damping of structural vibrations with piezo-
electric materials and passive electrical networks,” J. Sound Vib. 146, 243–268
(1991).
30G. Trainiti, Y. Xia, J. Marconi, G. Cazzulani, A. Erturk, and M. Ruzzene, “Time-
periodic stiffness modulation in elastic metamaterials for selective wave filtering:
Theory and experiment,” Phys. Rev. Lett. 122, 124301 (2019).
31C. Sugino, S. Leadenham, M. Ruzzene, and A. Erturk, “An investigation of elec-
troelastic bandgap formation in locally resonant piezoelectric metastructures,”
Smart Mater. Struct. 26, 055029 (2017).
32C. Sugino, M. Ruzzene, and A. Erturk, “Design and analysis of piezoelectric
metamaterial beams with synthetic impedance shunt circuits,” IEEE/ASME Trans.
Mechatron. 23, 2144–2155 (2018).
33Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: Physics and
applications,” Research 2019, 1849272.
34B. Bao, M. Lallart, and D. Guyomar, “Manipulating elastic waves through
piezoelectric metamaterial with nonlinear electrical switched dual-connected
topologies,” Int. J. Mech. Sci. 172, 105423 (2020).
35Y. Y. Chen, G. K. Hu, and G. L. Huang, “An adaptive metamaterial beam with
hybrid shunting circuits for extremely broadband control of flexural waves,” Smart
Mater. Struct. 25, 105036 (2016).
36J. Gripp and D. Rade, “Vibration and noise control using shunted piezo-
electric transducers: A review,” Mech. Syst. Signal Process. 112, 359–383
(2018).
37Z. Lin, H. Al Ba’ba’a, and S. Tol, “Piezoelectric metastructures for simultaneous
broadband energy harvesting and vibration suppression of traveling waves,” Smart
Mater. Struct. 30, 075037 (2021).
38Z. Lin and S. Tol, “Electroelastic metasurface with resonant piezoelectric
shunts for tunable wavefront control,” J. Phys. D: Appl. Phys. 56, 164001
(2023).
39K. Marakakis, G. K. Tairidis, P. Koutsianitis, and G. E. Stavroulakis, “Shunt
piezoelectric systems for noise and vibration control: A review,” Front. Built
Environ. 5, 64 (2019).

APL Mater. 11, 091118 (2023); doi: 10.1063/5.0165267 11, 091118-13

© Author(s) 2023

 23 February 2024 18:16:31


