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In this Letter, an elastic twisted kagome lattice at a critical twist angle, called self-dual kagome
lattice, is shown to exhibit peculiar finite-frequency topological modes which emerge when certain
conditions are satisfied. These states are topologically reminiscent to the zero energy (floppy) modes
of Maxwell lattices but they occur at a finite frequency in the band gap of self-dual kagome lattice.
Thus, we present a completely new class of topological modes which share similarities with both the
zero frequency floppy modes in Maxwell lattices and the finite energy in-gap modes in topological
insulators. We envision the presented mathematical and numerical framework to be invaluable
for many technological advances pertaining to wave phenomenon such as reconfigurable waveguide
designs.

Introduction.—In the past few years, the concept of topo-
logical mechanical/elastic systems has led to a variety of
intriguing development [1–18]. In analogy to topologi-
cal states in quantum many-body systems, the nontrivial
topology structure from phonon bands grants these ma-
terials novel properties such as topologically protected
edge/surface/corner modes. In general, current studies
about topological mechanical/elastic systems can be clas-
sified into two categories. In the first category, the dy-
namic matrix of a elastic system is mapped to the Hamil-
tonian of an electronic system. Utilizing topological clas-
sifications developed for electronic systems [19–24], this
mapping enables mechanical systems to achieve the same
type of topological phenomena, such as topological edge
states in quantum Hall (or spin-Hall or valley-Hall) in-
sulators [3–6, 10–15, 17]. The second category is known
as Maxwell systems [1, 2, 8, 9, 16]. For these systems,
the nontrivial topology is not coded in the dynamic ma-
trix. Instead, it focuses on the connection between elastic
constraints and the degrees of freedom, which maps elas-
tic problem into a superconductor, known as the BDI
class [1, 21, 22]. From there, topological indices can be
defined, which governs zero-energy topological states at
edges.

These two classes of topological mechanical systems
involve totally different concepts and theoretical descrip-
tion. More importantly, they exhibit distinct topolog-
ical phenomena. For topological systems in the first
category, the topological phenomenon have to manifest
themselves as high frequency physics, i.e., the topologi-
cal edge/surface/corner states can only arise between two
phonon bands (above the acoustic bands), and funda-
mental physics principles prevent such topological states
to emerge below the acoustic band. This is because
acoustic band is the lowest phonon band, and thus if
mapped to electrons, topological indices are required to
be zero below the lowest available energy bands. For
the second category, on the contrary, topological states

must be at (or close to) zero energy, which is below the
lowest phonon bands, and fundamental physics princi-
ple prohibit such topological states to arise above the
acoustic band. In other words, these two classes of topo-
logical phenomena are separated in frequency by funda-
mental principles. There is also important difference be-
tween these two categories regarding the dispersion of
edge modes. In the first category, topological edge modes
are typically disperse (usually connect the bulk bands
above and below the gap). In contrast, topological edge
modes in Maxwell systems are dispersionless (i.e., they
form flat bands).

Very recently, there arises a new progress in elastic-
ity called mechanical duality where the mechanics of
two apparently different physical systems is related via
mathematical mappings. If the system maps onto itself,
then is called self-dual and it shows remarkable proper-
ties. Recently, Fruchart et al. [25] found that the elastic
twisted kagome lattice show duality while transitioning
through its collapse mechanism [26] where two different
structural configurations, equidistant from a mechanical
critical point, have same dynamic characteristics and re-
lated elastic moduli. At the critical point, the twisted
kagome lattice is self-dual and has a two-fold degenerate
dispersion band structure. Later, Gonella [27] numer-
ically demonstrated the duality in twisted kagome lat-
tices by stitching together two dual configurations form-
ing a heterogeneous bi-domain structure. More recently,
Danawe et al. [18] observed peculiar (d-2)-dimensional
in-gap corner modes in self-dual kagome lattice occur-
ring at a finite in-gap frequency.

In this Letter, we show that with the help of mechani-
cal duality, a new type of topological mechanical system
arises, which exhibit properties of both categories dis-
cussed above. Same as the first category, these topologi-
cal states arises at high frequency above acoustic bands,
in band gaps between various phonon bands. However,
the origin and topological structure of these topological
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FIG. 1. (a) A self-dual twisted kagome lattice and its unit
cell with three equal masses at lattice sites A, B and C in-
terconnected by bonds of stiffness k, e1 and e2 are the direct
lattice basis vectors. (b) The dispersion band structure of
self-dual kagome lattice with all free lattice sites (solid lines)
and pinned C lattice sites (dotted lines). The flat bands for
lattice with pinned C sites appear at Ω = 1 (in the band
gap of free lattice) and Ω =

√
3 (at Dirac point of free lat-

tice), where Ω = ω
√

m
k

. The first irreducible Brillouin zone
K − Γ−M −K is shown in the inset.

states follow the same principle as Maxwell systems, and
the topological edge (or domain-wall) states are disper-
sionless.
Self-dual kagome lattice.—A kagome lattice is character-
ized by three equal masses m located at lattice cites A, B
and C on the vertices of an equilateral triangle as shown
in Fig. 1(a). The masses are interconnected by elastic
bonds of stiffness k. The self-dual kagome lattice has
same types of bonds of the unit cell oriented perpendic-
ular to each other. For example, in Fig. 1(a), the two
CA bonds are at 90◦ to each other, and similarly, the
two CB bonds and two AB bonds are perpendicular to
each other. The mass at each node can translate in the
x− and y− directions and the displacement of the `th

node can be represented by a 2D vector uT
` = (ux` , u

y
` ),

i.e., two degrees of freedom per node. By virtue of the
periodicity, the displacements of nodes 2-4 and 3-5 are
related and governed by Bloch’s theorem, such that:

u4 = eik·e1u2 = eiq1u2 (1a)

u5 = eik·e2u3 = eiq2u3 (1b)

where k is the Bloch wave vector, e1, e2 are direct lat-
tice basis vectors and q1, q2 are reduced wave vectors
given by q1 = k · e1, q2 = k · e2. Thus there are total
six degrees of freedom (DOFs) per unit cell correspond-
ing to the three nodes 1, 2 and 3. The dispersion band
structure of a self-dual kagome lattice is shown in Fig.
1(b) having three doubly degenerate dispersion branches
(solid lines) i.e., for every wave vector k there are three
pairs of identical eigenfrequencies. Now, if the C sites
of the lattice are pinned, the unit cell is left with only
4 DOFs and the band structure reduces to two doubly

degenerate flat bands as shown by dotted lines in Fig.
1(b) (see Supplemental Material for more details [28]).
Interestingly, the flat bands at Ω = 1 are in the band
gap of the lattice with all free sites and that at Ω =

√
3

pass trough the Dirac point of the free lattice band struc-
ture. For more details on band structure calculation of
twisted kagome lattice as function of twist angle, see Ref.
[18], where the author demonstrated existence of corner
modes in a self-dual kagome lattice which also evidently
happen to appear at Ω = 1 characterized by zero defor-
mation of same type of lattice sites, as if they are pinned.
In this Letter, we further investigate the localized states
near intentionally pinned sites of same type (A, B, or C)
in the bulk of self-dual kagome lattice with the reason for
their existence and their topological nature.

Finite-frequency localized modes.—What will happen if
some (but not all) of the C sites are pinned? For such
a partially pinned self-dual kagome lattice, it turns out
that an intriguing phenomena emerge: no matter how
many C sites we choose and regardless of which C sites
are selected, each pinned C site always generates 4 modes
localized around this site, two at frequency Ω = 1 and
two at Ω =

√
3 (see Supplemental Material for more de-

tails [28]). In a lattice system, localized modes induced
by a pinned site is not uncommon. However, if we pin
two (or more) sites close to each other, these localized
modes will typically hybridize with each other and thus
their frequency shall shift depending on the distance be-
tween these pinned sites. Such hybridization never arise
in the self-dual kagome lattice, and the frequency of these
localize mode always remains exact Ω = 1 or

√
3, even

if two pinned C sites are right next to each other. This
absence of hybridization is a unique property of this self-
dual lattice, and is one of the key results of this study.

In addition, these localized modes also have some other
intriguing properties. Firstly, although only some of the
C sites are pinned, for all these Ω = 1 or

√
3 modes, all C

sites in the entire lattice exhibit zero displacement (i.e.,
all C sites are effectively pinned) similar to the corner
modes observed in Ref. [18]. Secondly, this phenomenon
is extremely robust and doesn’t exhibit any finite-size or
boundary effect. The same phenomena and exact fre-
quencies are observed regardless of system size (from a
few unit cells to infinite lattices) or boundary conditions
(open or periodic). The location of the pinned sites (near
the edge or in the bulk) has no impact either.

Because these localized modes never hybridize with
each other, we can use them as building block to cre-
ate more complicated structures. For example, if we pin
one row of C sites along a straight or zigzag line, these
localized modes will form a 1D waveguide, with four 1D
flat bands, two at Ω = 1 and two at Ω =

√
3. If two

rows of C sites are pinned, two such waveguides are ob-
tained. Even if the two waveguides are very close to each
other, the waveguide modes would not hybridize between
the two waveguides. If we pin all the C sites, these lo-
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FIG. 2. (a) Eigenfrequencies of a supercell with a pinned lat-
tice site in the bulk. The two doubly degenerate flat bands
appear at Ω = 1 and Ω =

√
3. (b) The mode shapes corre-

sponding to the flat bands at Ω = 1 and Ω =
√

3 localized
near pinned lattice site for q1 = 2π/10. The two modes, at
the same frequency, decay away from the pinned lattice site
in opposite directions with the same decay rate.

calized modes produces four 2D flat bands as shown in
Fig. 1(b). To better demonstrate this effect, in Fig. 2(a),
we present the phonon band structure with one row of C
sites pinned down, calculated using the supercell shown
in Fig. 2(b). Two flat 1D bands at Ω = 1 and two at
Ω =

√
3 are obtained. These modes are localized near

the row of pinned C sites (except at q1 = 0, Ω =
√

3)
with exponentially decaying mode shape away from the
pinned sites.

Topology and analytic theory.— It turns out that these
robust features have the same topological origin as
the zero-frequency topological edge modes in Maxwell
systems, i.e., a topological winding number from the
Maxwell counting argument [1, 2, 8]. However, because
the topological modes here are at finite frequencies, a
new tool of localized basis needs to be introduced.

In a lattice system, any deformation can be character-
ized by the displacement field W = (uT

1 ,u
T
2 , . . . ,u

T
Ns

)T ,
where ui is the deformation vector of the ith lattice site.
This deformation vector has d × Ns-components, where
d is the space dimension and Ns is the number of sites.
We define two special sets of deformation fields, W+

〈i,j〉
and W−

〈i,j〉, which will serves as basis of our topologi-

cal modes. Here, 〈i, j〉 represent a bond connecting two
neighboring sites i and j. For the deformation W+

〈i,j〉,
all other lattice sites exhibit zero displacement, except
sites i and j, which share the same displacement vector,
ui = uj = n〈i,j〉 with ni,j being the unit vector along

the bond 〈i, j〉. For W−
〈i,j〉, it is very similar except that

i and j have opposite displacements ui = −uj = n〈i,j〉.

Here, we focus on symmetric deformations W+, which
gives eigenmodes at Ω = 1. The anti-symmetric ones
W− follow exactly the same physics, and they produce
eigenmodes at Ω =

√
3. Using symmetric deformations
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FIG. 3. (a) The decay rate of edge modes obtained from the
compatibility matrix formulation compared with the decay
rate from supercell simulations. (b) The mode shape of a
infinite ribbon with pinned row of A lattice sites for q1 = π
at which the decay rates approach −∞ resulting in the highly
localized edge mode near the the pinned row of lattice sites.

W+, we can construct the following displacement field

WAB =
∑

〈Ai,Bj〉
A〈Ai,Bj〉W

+
〈Ai,Bj〉 (2)

This deformation is a linear superposition of W+, and
A〈Ai,Bj〉 is the coefficient/amplitude for each W+. Here,
we only use bonds connecting a A site and a B site, and
therefore all C sites have zero deformation. Similarly,
we can define WCA or WBC using CA or BC bonds,
respectively. Here, we shall focus on WAB, and the same
results can be easily generalized to WCA and WCB.

In general, WAB is not an eigenmode of the dynamic
matrix. However, it is straightforward to verify that for
the self-dual lattice, WAB becomes an eigenmode with
frequency Ω = 1, if the following constraint is obeyed:
all C sites stay at their equilibrium positions (pinned or
at force balance). Therefore, to study the Ω = 1 modes,
we can use the linear space of WAB, where the num-
ber of degrees of freedom is the number of AB bonds
Ndof = NAB. At the same time, without pinning, the
total constraint number is Nc = 2NC, because the x and
y components of the total force on each C site need to
remain zero. Remarkably, for a kagome lattice, these two
numbers coincide, Ndof = Nc, and thus the system is at
the Maxwell point.

Same as in topological mechanics, here we can define
an effective compatibility matrix to connect the degrees
of freedom and the constraints.

F = CeffA (3)

Here, F = (F1,x, F1,y, F2,x, F2,x . . .)
T is a Nc component

vector, where Fi,x and Fi,y are the x and y components of
the total force on the ith C site. A is an Ndof dimensional
vector composed of the coefficients A in Eq. (2).

In analogy to Maxwell topological mechanics, the null-
space of the Ceff matrix (i.e. all modes obeying CeffA =
0) corresponds to W+ modes at Ω = 1. For a lattice
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with periodic boundary condition and without any pin-
ning sites, Nc = Ndof , and thus Ceff is a square ma-
trix. As shown in the Supplemental Material [28], here
detCeff 6= 0, and thus the null-space is empty, indicating
the absence of any Ω = 1 modes. However, once some C
sites are pinned, Ceff is no longer a square matrix. In-
stead, the number of degrees of freedom now exceeds the
number of constrains Ndof > Nc, and thus the null space
shall contain Ndof −Nc independent modes. It is easy to
realize that for every pinned C site, Nc reduces by 2 and
thus Ndof −Nc increases by 2. This the reason why we
obtains two Ω = 1 modes for every pinned C sites. The
same approach and conclusions also apply to W− modes
at Ω =

√
3, except that we have bulk W− modes at zero

wave-vector corresponding to the Dirac point.
Same as in Maxwell topological mechanics, a topo-

logical index can be defined for this Ceff matrix,
which dictates the number of topologically protected
edge/domain-wall modes [1, 2, 8, 16]. To define this in-
dex, we need to switch to the momentum space, where
the Ceff becomes (See Supplemental Material [28])

Ceff = k

(
1
2 + 3

4 (eiq1 + eiq2)
√
3
4 (e−iq1 − e−iq2)

−
√
3
4 (eiq1 − eiq2) 1

2 + 3
4 (e−iq1 + e−iq2)

)

(4)

For each value of q1, a topological winding number can
be defined as

n =

∮
dz

2πi
tr
(
C−1∂zC

)
(5)

where z = eiq2 . Using the gauge-invariant integral con-
tour introduced in Ref. [16], (i.e., the unit circle on the
complex z plane and remove the residue at z = 0 or
z = ∞), we can obtain two integer topological indices.
For a line of pinned C sites (Fig. 2), at each q1, these
two topological indices dictates the number topologically-
protected modes localized above and below the pinned
line respectively (i.e., with a negative or positive decay
rate). For the Ceff matrix here, both the two indices are
unity, which means that for each q1, we have two modes
at Ω = 1 localized near this 1D line, one above and one
below, in full agreement with numerical simulations.

In addition to the number of modes, the Ceff matrix
also dictates their localization length and mode shape,
same as Maxwell zero mode [1, 2, 7, 8, 16, 29]. For a
given q1, the equation detCeff = 0 has a complex q2
solution, and its imaginary part is the decay rate

Imq2 = ln

(
14 + 6 cos q1 −

√
142 + 96 cos q1 + 18 cos 2q1
12 cos q1

2

)

(6)

As shown in Fig. 3, this analytic prediction perfectly
agrees with the decay rated measured from supercell sim-
ulations.
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FIG. 4. (a) Eigenfrequencies of a supercell with a loosely
pinned lattice site. The flat bands of supercell with pinned
lattice site become disperse due to loose pinning, but they
remain two-fold degenerate. (b) Wave propagation along the
loosely pinned sites in a finite lattice due to non-zero group
velocity. The central unit cell with a pinned lattice site is
excited using a harmonic excitation and the displacement field
is obtained as a function of time.

Loosely pinned waveguides.— Instead of complete pin-
ning, loosely pinning the lattice sites using an elastic
foundation of finite spring stiffness (here 4k) results in
eigenfrequency solutions of supercell as depicted in Fig.
4(a). The flat bands appearing in the band gap of super-
cell with pinned lattice sites (Fig. 2(a)) are not flat in
case of supercell with loosely pinned sites; however, they
are still two-fold degenerate. With the loosely pinned
sites, the non-zero group velocity allows transmission of
wave energy along the pinned lattice sites whereas the
bulk of the lattice remains isolated due to the band gap.
The time snapshots and RMS of displacement field in a
finite self-dual kagome lattice with loosely pinned lattice
sites is shown in Fig. 4(b) proving the selective wave
propagation along a desired path. The loosely pinned
waveguide is reconfigurable by simply pinning and un-
pinning of lattice sites.

The spatial decay of the two degenerate edge modes is
on the opposite sides of the pinned row of lattice sites.
Thus, exciting only one of the modes results in decay of
edge modes only on one side of the waveguide that would
completely isolate the other half of the finite lattice divide
by the waveguide. For instance, the zigzag waveguide
shown in Fig. 4(b) is excited at a point shown in red
lying in the lower half of finite lattice. Thus, the edge
modes decay away from the waveguide into the lower half.
Hence, having a neighboring row of loosely pinned lattice
in the upper half of finite lattice would result in zero
interference between the two waveguides.

Conclusions.—In this work, we analyzed a new type of
topological states in a self-dual kagome lattice which ex-
ist at two specific frequencies Ω = 1,

√
3 localized near

pinned sites of a sublattice. These states appear at
Maxwell point where the number of degrees of freedom is
equal to number of constraints. Although analogous to
topological mechanics in Maxwell lattices, the Maxwell



5

relation obtained for self-dual kagome lattice is funda-
mentally different and the modes are at finite frequency
instead of zero frequency floppy modes, but they retain
their dispersionless (flat band) behavior. These modes
exhibit special deformation fields which are character-
ized by equal deformation of two lattice sites along the
bond connecting them while the deformation of rest of
the sites is zero. For a row of pinned sites of a sublat-
tice, the topological modes are localized near the pinned
sites while decaying exponentially in the bulk. The decay
rate is obtained from the determinant of effective com-
patibility matrix and it is compared with supercell simu-
lations with excellent agreement. The topological index
for these modes is same as that for zero frequency modes
in Maxwell lattices and it corroborates the existence of
two topological modes at frequencies Ω = 1 and

√
3.
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Topologically robust sound propagation in an angular-
momentum-biased graphene-like resonator lattice, Na-
ture Communications 6, 8260 (2015).

[5] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu,
X.-P. Liu, and Y.-F. Chen, Acoustic topological insulator
and robust one-way sound transport, Nature Physics 12,
1124 (2016).

[6] X. Ni, M. A. Gorlach, A. Alu, and A. B. Khanikaev,
Topological edge states in acoustic kagome lattices, New
J.Phys. 19, 055002 (2017).

[7] D. Rocklin, S. Zhou, K. Sun, and X. Mao, Transformable
topological mechanical metamaterials, Nat. Commun. 8,
14201 (2017).

[8] X. Mao and T. C. Lubensky, Maxwell lattices and topo-
logical mechanics, Annu. Rev. Condens. Matter Phys. 9,
413 (2018).

[9] J. Ma, D. Zhou, K. Sun, X. Mao, and S. Gonella, Edge
modes and asymmetric wave transport in topological lat-
tices: Experimental characterization at finite frequencies,
Phys. Rev. Lett. 121, 094301 (2018).

[10] H. Chen, H. Nassar, and G. L. Huang, A study of topo-
logical effects in 1D and 2D mechanical lattices, J. Mech.

Phys. Solids 117, 22 (2018).
[11] H. Chen, H. Nassar, A. N. Norris, G. K. Hu, and G. L.

Huang, Elastic quantum spin Hall effect in kagome lat-
tices, Phys. Rev. B 98, 094302 (2018).

[12] G. Ma, M. Xiao, and C. T. Chan, Topological phases in

acoustic and mechanical systems, Nat. Rev. Phys. 1, 281
(2019).

[13] J. Ma, K. Sun, and S. Gonella, Valley hall in-plane edge
states as building blocks for elastodynamic logic circuits,
Phys. Rev. Applied 12, 044015 (2019).

[14] T. W. Liu and F. Semperlotti, Experimental Evidence
of Robust Acoustic Valley Hall Edge States in a Nonres-
onant Topological Elastic Waveguide, Phys. Rev. Appl.
11, 14040 (2019).

[15] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang,
Acoustic higher-order topological insulator on a kagome
lattice, Nat. Mater. 18, 108 (2019).

[16] K. Sun and X. Mao, Continuum theory for topological
edge soft modes, Phys. Rev. Lett. 124, 207601 (2020).

[17] Q. Wu, H. Chen, X. Li, and G. Huang, In-plane second-
order topologically protected states in elastic kagome lat-
tices, Phys. Rev. Applied 14, 014084 (2020).

[18] H. Danawe, H. Li, H. A. Ba’ba’a, and S. Tol, Existence
of corner modes in elastic twisted kagome lattices, Phys.
Rev. B 104, L241107 (2021).

[19] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[20] X.-L. Qi and S.-C. Zhang, Topological insulators and su-
perconductors, Rev. Mod. Phys. 83, 1057 (2011).

[21] A. Kitaev, Periodic table for topological insulators and
superconductors, AIP Conf. Proc. 1134, 22 (2009).

[22] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-
wig, Classification of topological insulators and super-
conductors in three spatial dimensions, Phys. Rev. B 78,
195125 (2008).

[23] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space
groups, Nat. Comm. 8, 50 (2017).

[24] B. Bradlyn, E. L., J. Cano, M. G. Vergniory, Z. Wang,
M. I. Felser, C. Aroyo, and B. A. Bernevig, Topological
quantum chemistry, Nature 547, 298–305 (2017).

[25] M. Fruchart, Y. Zhou, and V. Vitelli, Dualities and non-
abelian mechanics, Nature 577, 636 (2020).

[26] S. Guest and J. Hutchinson, On the determinacy of repet-
itive structures, Journal of the Mechanics and Physics of
Solids 51, 383 (2003).

[27] S. Gonella, Symmetry of the phononic landscape of
twisted kagome lattices across the duality boundary,
Phys. Rev. B 102, 140301 (2020).

[28] See supplemental material for more details on localized
states near pinned sites in a finite lattice, dispersion
bands of self-dual kagome lattice with pinned sublattice
and spatially compact localized states.

[29] K. Sun, A. Souslov, X. Mao, and T. C. Lubensky, Sur-
face phonons, elastic response, and conformal invariance
in twisted kagome lattices, Proceedings of the National
Academy of Sciences 109, 12369 (2012).



Finite-Frequency Topological Maxwell Modes in Mechanical Self-Dual Kagome
Lattices

(Supplemental Material)

Hrishikesh Danawe,1 Heqiu Li,2, 3 Kai Sun,2 and Serife Tol1

1Department of Mechanical Engineering, University of Michigan, Ann-Arbor, MI 48109-2125, United States
2Department of Physics, University of Michigan, Ann-Arbor, MI 48109-2125, United States

3Department of Physics, University of Toronto, Toronto, Ontario, Canada

LOCALIZED STATES NEAR PINNED SITES IN A FINITE LATTICE

From the supercell analysis presented in the main text, it is evident that pinning a row of same lattice sites in bulk
results in localized modes near the pinned sites. In this section, we pin one or multiple sites of the same kind in a
finite lattice which has free boundary conditions for all truncated edges. Eigenfrequency solutions for a finite self-dual
triangle-shaped lattice with one pinned C site is depicted in Fig. S1(a) with two in-gap modes at Ω = 1. The mode
shape corresponding to these modes is as shown in Fig. S1(b). The mode is localized around the pinned C site and
all C sites in the bulk have zero deformation. Apart from these modes, there are two more modes at Ω =

√
3 localized

near the pinned site in the bulk. Now, if two of the C sites are pinned in the bulk, there exist four in-gap modes at
Ω = 1 as shown in Fig. S1(c). The mode shape of these modes is depicted in Fig. S1(d). Similarly, there exist four
modes at the frequency Ω =

√
3 localized near the pinned sites. In conclusion, there are always two localized states

per pinned site in the bulk at frequency Ω = 1 and
√

3 if all pinned sites are of same type (A, B or C) no matter
how far or close these sites are located in the bulk. Also, if two sites of different type are pinned in the bulk, as long
as they do not affect each other (i.e. the localized modes at one site decay before it reaches to other type of pinned
site), there still exist two localized modes per pinned site at Ω = 1 and

√
3.

For a parallelogram-shaped self-dual kagome lattice with one pinned site in the bulk, there are four in-gap modes
at Ω = 1 as shown in Fig. S2(a) contrary to only two modes per site in a triangle-shaped lattice. The additional
two modes corresponds to the corner modes localized at the two 120◦ angled corners that hold C sites which act as if
they are pinned [S1]. Thus, the mode shape of these modes show localization near the single pinned site in the bulk
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and additionally at the 120◦ angled corners of the parallelogram. Apart from these modes, there are two modes at
Ω =

√
3 for the pinned site in the bulk as shown in Fig.S2(c) but no localization is observed near corners of the finite

lattice at this frequency. Thus, the mode shape of modes at frequency Ω =
√

3 are localized at the single pinned site
in the bulk as depicted in Fig.S2(d).

SELF-DUAL KAGOME LATTICE WITH PINNED SUBLATTICE

Figure S3(a) depicts the unit cell of a self-dual twisted kagome lattice with one pinned site, e.g. site C. The unit cell
now constitutes only four degrees of freedom corresponding to the sites A and B. The dispersion band structure has
two degenerate flat bands with zero group velocity as shown in Fig. S3(b). Thus, the frequencies of these modes take
very specific values: Ω = 1 and

√
3 for the lower two and upper two modes, respectively. The dispersion surfaces are

depicted in Fig. S3(c) which are flat bands (Ω is independent of wavevector k) at Ω = 1 and
√

3. Pinning sublattice
A or B, instead of sublattice C, results in identical dispersion bands.

The flat lines appearing in the bulk band gap of the self-dual kagome lattice are related to the flat dispersion
bands of a lattice with one pinned site. Since the observed localized modes when a site C in the bulk is pinned, for
instance, all bulk C sites have zero deformations for these localized modes while no pinning is enforced in the bulk
(i.e., they are effectively “pinned”). In this sense, these modes are “descendants” of the flat bands obtained from the
unit cell analysis of the pinned lattice. Interestingly, these modes can be solved analytically for the finite structure
(very much similar to the analytical solution of the pinned flat bands), which can be shown to have eigenvalues at
exactly Ω = 1,

√
3.

SPATIALLY COMPACT LOCALIZED STATES

The number of degrees of freedom is the number of AB bonds Ndof = NAB. This counting comes from Eq. (2)
in the main text, which contains NAB independent free parameters (A〈Ai,Bj〉). In a kagome lattice, we have two AB
bonds per unit cell, and thus Ndof = NAB = 2N , where N is the number of unit cells. As for the number of constraint,
for each C site, we have two constraints: the x- and y- components of the total force is zero. Thus, for the whole
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lattice, the number of constraint is Nc = 2NC, where NC is the number of C sites. For a kagome lattice, we have
one C site per unit cell, and thus Nc = 2NC = 2N , where N is the number of unit cells. Remarkably, here, we have
exactly the same number of constrains and degrees of freedom Ndof = Nc, i.e., the system is at the Maxwell point.
It must be emphasized, in contrast to topological mechanics in Maxwell lattices, this Maxwell relation we found here
is fundamentally different. Most importantly, as will be shown below, the counting argument here deals with finite
frequency modes instead of zero energy ones.

Here we consider deformations defined in Eq. (2) in the main text and the deformation of C sites are set to zero.
Same as in topological mechanics, we can define an effective compatibility matrix to connect the degrees of freedom
and the constraints given by Eq. (3) in the main text.

For a lattice with periodic boundary condition and without any pinning sites, Nc = Ndof , and thus Ceff is a
square matrix. As will be shown below for W+ modes (at frequency Ω = 1), this matrix has a nonzero determinant.
Therefore, to satisfy the constraint F = 0, there is only a trivial solution A, indicating the absence of Ω = 1, W+

modes. However, once some C site is pinned, Ceff will no longer be a square matrix. Instead, the number of degrees
of freedom (Ndof ) now exceeds the number of constrains Nc, and thus we shall find Ndof −Nc independent nontrivial
solutions for the constraint F = 0, which gives us Ndof − Nc independent modes at frequency Ω = 1. This number
Ndof − Nc is precisely twice the number of pinned C sites. In other words, for each pinned C sites, we shall obtain
two modes at Ω = 1. The same approach and conclusions also follows to W− modes at Ω =

√
3, except that we have

bulk W− modes at zero wave-vector corresponding to the Dirac point.
It is worthwhile to emphasize that these modes induced by site pinning has a finite localization length. In other

words, these modes are not due to local motions of one or a few cites near the pinned site. Instead, its wavefunction
extends away from the pinned sites, and the amplitude decays gradually as we move away from the pinned site.
Typically, if two localized modes with the same frequency are brought together, hybridization between the two modes
will lift the degeneracy, splitting one frequency into two. But for the topological modes here, even if we pin two
neighboring C sites, where the Ω = 1 or

√
3 modes from the two sites have strong real-space over lap, their frequency

will stay at the same value without any splitting. This is one unique feature and a consequence of topological
protection.

To better understand these topological modes and to define the topological index, here, we transfer from the real
space to the k-space, utilizing Bloch’s theorem, which requires the deformation to obey Bloch conditions (Eq. (1) in
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the main text). We use site labels shown in Fig. 1(a) in the main text, where site 1 belongs to the C sublattice and
sites 2 and 4 (3 and 5) belong to the B(A) sublattice. For a given wavevector, Bloch modes composed of W+ modes
can be written as

u2(q1, q2) = A1n〈2,3〉 +A2n〈4,5〉e
−iq1 (S1)

u3(q1, q2) = A1n〈2,3〉 +A2n〈4,5〉e
−iq2 (S2)

Because we have two AB bonds per unit cell (between sites 2 and 3, and between sites 4 and 5), each bonds may
contribute a different amplitude, which is represented by A1 and A2 respectively in this formulae. n〈2,3〉 and n〈4,5〉
are unit vectors along the bond 2-3 and 4-5, respectively. Deformation for site 4 and 5 can be obtained via the Bloch
conditions (Eq. (1) in the main text), and thus we can obtain total force applied to site 1 as

F =

5∑

i=2

k(n〈i,1〉 · ui) n〈i,1〉 (S3)

where n〈i,1〉 is the unit vector along bond 〈i, 1〉 and F = (Fx, Fy) is the force on site 1. This relation can be written
in a matrix form

(
Fx

Fy

)
= Ceff

(
A1

A2

)
(S4)

where Ceff is a 2 × 2 matrix. It is the k-space version of the same effective compatibility matrix defined above. For
the self-dual kagome lattice

Ceff = k

(
1
2 + 3

4 (eiq1 + eiq2)
√
3
4 (e−iq1 − e−iq2)

−
√
3
4 (eiq1 − eiq2) 1

2 + 3
4 (e−iq1 + e−iq2)

)
(S5)

In this k-space formula, at each wave-vector, there are two degrees of freedom (A1 and A2) and two constraints
(Fx = 0 and Fy = 0). Thus, we are the Maxwell point as discussed early on. The Ceff matrix here connects degrees
of freedom with constraints, and thus it serves the same role as the compatibility matrix in topological mechanics.
Therefore, we will name this matrix the effective compatibility matrix.

This effective compatibility matrix is a function of eiq1 and eiq2 . In an infinite lattice (with periodic boundary
conditions), the system is at the Maxwell point, and it is easy to verify that detCeff 6= 0 for any real q1 and q2. Thus,
in such a setup, the constraint F = 0 only has a trivial solution A1 = A2 = 0, i.e., no Ω = 1 mode is expected. This
is consistent with the phonon band structure, which shows a gap around Ω = 1.

If we pin one row of C sites along a straight line parallel to e1, the transnational symmetry along the e1 direction
implies that q1 is still a well-defined vector. Here, in order to obtain nontrivial solutions of the constraints F = 0, we
must require detCeff = 0. For a given q1, a complex solution of q2 can be found

q2 =
q1
2
− i ln

−14− 6 cos q1 ±
√

142 + 96 cos q1 + 18 cos 2q1

12 cos q1
2

(S6)

These waves with a real q1 and a complex q2 are localized 1D modes near the pinned 1D array of sites. The imaginary
part of q2 is the decay rate, which is

ln

(
14 + 6 cos q1 −

√
142 + 96 cos q1 + 18 cos 2q1
12 cos q1

2

)
(S7)

As we move away from the pinned 1D array, for each lattice constant e2, the amplitude of deformation decreases by
a factor of

∣∣∣∣
−14− 6 cos q1 ±

√
142 + 96 cos q1 + 18 cos 2q1
12 cos q1

2

∣∣∣∣ (S8)

These localized modes are topologically protected. The topological index and bulk-edge correspondence are in
strong analogy to the zero-energy topological modes defined in Maxwell lattices. To define the topological index, we
utilize the determinant of the Ceff matrix. For each given q1, detCeff is a function of eiq2 . We can define a complex
coordinate z2 = eiq2 . As shown in Ref.[S2], detCeff is a polynomial function z2 (negative powers of z2 is allowed), and
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the number of localized mode on each side of the pinned 1D array of sites is dictated by the topological index [Eq.
6 in Ref.[S2] and the contour follows figure 1(c). T/B gives topological modes number above/below the 1D pinned
line].

For W− modes, the compatibility matrix is

Ceff = k

(
3
4 (eiq1 − eiq2)

√
3
2 −

√
3
4 (eiq1 + eiq2)

−
√
3
2 +

√
3
4 (e−iq1 + e−iq2) 3

4 (e−iq1 − e−iq2))

)
(S9)

and the decay rate (the imaginary part of q2) is

ln

(
3− cos q1 −

√
14− 2 cos q1 sin q1

2

2 cos q1
2

)
(S10)

The decay rates given by Eq.S7 and Eq.S10 are plotted in Fig. 3(a) in the main text along with the decay rates
obtained from supercell simulations for q1 taking values in the range 0 to π. There is an excellent agreement between
the theoretical and numerical results at both the frequencies Ω = 1 and

√
3. The decay rates at both the frequencies

are found to approach −∞ when reduced wave vector q1 = π. Thus, at this extreme condition, the mode shape is
highly localized near the pinned site as depicted in Fig. 3(b) in the main text where only the unit cell sites closet to
the pinned site show significant deformation whereas all other sites have negligible deformation.
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