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ABSTRACT

We report on a novel scissor-like electromechanical metamaterial (SEMM) with enhanced and tunable damping properties, stemming from
its electromechanical resonant effects. The displacement amplification mechanism of the scissor-like structure in SEMM is exploited to
amplify the damping ratio for stronger vibration mitigation through the enhanced electrical dissipation of the amplified voltage of the piezo-
electric element. The relative dissipation performance, termed as metadamping, is quantified based on complex band structures, which
allow frequencies to be complex valued. Using different shunting circuits, the overall damping performance of SEMM is demonstrated to be
higher than a statically equivalent traditional systems, such as acoustic metamaterials and monatomic lattices. The dissipation performance
of SEMM is numerically verified via finite structure analysis and found to be in an excellent agreement with Bloch’s wave analysis.
Furthermore, the electromechanical nature of the piezoelectric material in SEMM provides a convenient way to tune the metadamping by
adjusting the piezoelectric shunting circuit.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0058086

I. INTRODUCTION

Metamaterials and phononics crystals (PCs) are novel class of
materials architected with structural periodicity. Metamaterials are
designed by engineering locally resonating substructures that are on
the subwavelength scale, while PCs include periodic lattices modu-
lated with mass or modulus on a scale comparable to the
wavelength.1–3 They can exhibit unique properties such as the
ability to reduce the wave velocities,4 forbid certain frequencies of
wave propagation (i.e., bandgaps),5,6 and exhibit negative effective
mass7/ modulus8. Hence, both metamaterials and PCs have
attracted an increasing research attention for their potential to
control acoustic/elastic waves in various applications including
vibration mitigation,9 wave filtering,10 focusing,11 energy harvest-
ing,12 seismic shielding,13 etc. In particular, bandgaps offered by
periodic structures have been thoroughly investigated as an alterna-
tive way to attenuate vibration and noise as compared to using tra-
ditional dampers or active vibration control techniques. In order to
enable a broadband frequency range of attenuation, researchers
have integrated piezoelectric materials in the periodic settings
referred to as metastructures.14–18 Furthermore, inertially amplified
mechanisms (i.e., dynamical systems with an artificially heavier
mass than its static mass) have been demonstrated to create ultra-

wide bandgaps for vibration suppression at low frequencies.19–23

Additionally, researchers have investigated dissipative metamateri-
als (including locally resonating unit cells with viscously damped
or viscoelastic elements) for their enhanced damping characteristics
so called “metadamping.” In contrast to the trade-off in damping
and stiffness characteristics of naturally occurring materials, dissi-
pative metamaterials are relatively stiff structures with strong load
bearing capacity.24–27

In general, the analysis of metamaterials and PCs and their
dynamic response are considered for unit cells with non-dissipative
material constituents. Researchers describe their dynamic behavior by
solving the dispersion equation relating the wave vector of a wave to
its frequency via Bloch theorem which can be applied to a single unit
cell of the periodic structure and solving the eigenvalue problem.
Assuming non-dissipative linear material constituents, the dispersion
analysis results in real-valued frequencies and generally complex wave
vectors (imaginary part reflects spatial wave attenuation). When the
unit cell exhibits a dissipative behavior, on the other hand, frequency
can be modeled as complex-valued to account for temporal wave
attenuation24. Researchers have investigated the effect of material
losses for both metamaterials and PCs and developed solution techni-
ques considering the dissipative effects.24,28–31 Notably, Hussein and
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Frazier, using complex dispersion diagrams, revealed that the effect
viscous elements in the locally resonating metamaterials can enhance
the effective damping ratio (known as metadamping phenomenon).24

The dissipative metamaterials can help with broadening the wave
attenuation frequency regime.32 In particular, considering the
advances in technology and the need for lightweight materials and
stiff structural designs, mechanical and aerospace structures are prone
to worse noise, vibration, and harshness (NVH) behavior.33 As an
effective solution for merging lightweight requirements and highly
dissipative performance, metadamping can be utilized in NVH
applications.

In this paper, we study a new dissipative metamaterial by
embedding piezoelectric materials into scissor-like configuration
and present a thorough analysis of metadamping toward tunable
and enhanced broadband vibration control. To this end, we intro-
duce scissor-like electromechanical metamaterial (SEMM) for
tunable and enhanced damping characteristics. Tunability of
damping is an important factor in many scenarios, for instance, to
provide effective vibration control over a wider range of frequen-
cies.34 Inspired by force-amplified piezoelectric structures35,36 and
scissor-like metamaterials,37 the proposed periodic design exploits
the scissor-like metamaterial concept and the electromechanical
nature piezoelectric material, which outperforms metadamping in
conventional metamaterials while offering a greater degree of tuna-
bility. We utilized the metadamping metric in Ref. 24 to quantify
the damping performance based on a generalized complex disper-
sion relations developed for dissipative structures. Metadamping
phenomenon in damped SEMM is shown to be tuned mechanically
(via changing the angle of scissor-like structures) and electrome-
chanically (via the piezoelectric shunting circuit) and achieve
higher damping capacity in a wide range of design space, relative to
equivalent periodic structures, such as acoustic metamaterials
(AMs) and monatomic lattices. Unique to our design is the dissipa-
tion of energy via an resistive-inductive (or resistive-only) shunting
circuit of the piezoelectric element, which is shown to be enhanced
if the electromechanical coupling is higher. The damping perfor-
mance is further aided by the mechanical tunability of the scissor-
like structure, which amplifies the voltage output by means of
amplified strains of the piezoelectric element. Such damping per-
formance is also assessed when the inertial amplification is present
in the system.

This paper is organized as follows: Following the Introduction,
Sec. II briefly presents complex dispersion analysis in a damped
monatomic lattice (ML). Section III discusses the dynamics and
wave characteristics of the proposed SEMM design and theory. The
damping performance of SEMM is then compared to classical AM
and ML systems, when resistive-inductive and short circuits are
used, respectively. The dispersion relation predictions are also veri-
fied via analyzing the eigenmodes of the finite structure. Also, the
special case of SEMM with resistive shunting circuits is presented.
Finally, Sec. IV summarize the key points in this study.

II. COMPLEX DISPERSION ANALYSIS: AN OVERVIEW

A. Mathematical formulation

First, we briefly introduce the mathematical formulation
described in Refs. 25 and 38 to obtain the dispersion relation for

complex band structure analysis. In general, the equations of
motion for a unit cell can be expressed, in the matrix form, as

M€zþ C _zþ Kz ¼ 0, (1)

where M, C, and K are the mass, damping, and stiffness matrices,
respectively, and z is the degrees of freedom describing the motion
of a unit cell. By virtue of the periodicity, a transformation matrix
T(κ) can be defined based on the Bloch theorem, which is a func-
tion of a non-dimensional wavenumber κ. Hence, the unit cell
degrees of freedom can be condensed to the essential degrees of
freedom zc using z ¼ Tzc, which results in

Mc€zc þ Cc _zc þ Kczc ¼ 0, (2)

where Mc(κ) ¼ THMT, Cc(κ) ¼ THCT, and Kc(κ) ¼ THKT, and
the superscript H denotes the Hermitian transpose. To obtain the
complex dispersion relations, we assume a solution for the essential
degrees of the form zc ¼ ẑceλt and the equation of motion reduces to

Dcẑc ¼ 0, (3)

where Dc(κ, λ) ¼ Mc(κ)λ2 þ Cc(κ)λþ Kc(κ) is the dynamic stiff-
ness matrix, λ is a complex-frequency variable, and ẑc is a complex
amplitude. The eigenvalues λ can be computed by reformulating the
equations into a state-space formulation to obtain a linear eigenvalue
problem. Alternatively, the determinant of Dc(κ, λ) can be derived to
obtain the characteristic polynomial (equivalently the dispersion rela-
tion) of the system, and the roots of the resulting polynomial yields
the eigenvalues λ. Finally, the eigenvalues λ can be generally expressed
in the following form:

λ ¼ �ζsωn + i ωd; ωd ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2s

q
, (4)

where ωd is the damped frequency, ζs is the damping ratio, and ωn is
the resonant frequency.

B. Monatomic lattice

In this section, we use a dissipative monatomic lattice as an
example to illustrate the concept of the complex dispersion rela-
tions. A unit cell of an infinitely long chain of a viscously damped
monatomic lattice [Fig. 1(a)] is governed by Eq. (1) with the dis-
placement vector z ¼ {ui�1 ui}

T and the following matrices:

M ¼ 0 0
0 m

� �
; C ¼ c

1 �1
�1 1

� �
; K ¼ k

1 �1
�1 1

� �
, (5)

where ui is the displacement of the ith unit, while m, c, and k are
the mass, damping coefficient, and spring constant, respectively.
Choosing zc ¼ ui, the displacements of the (i� 1)th and ith unit
cells can be related using the Bloch theorem as ui�1 ¼ uie�iκ (i is
the imaginary unit), and, hence, resulting in the transformation
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T ¼ e�iκ

1

� �
: (6)

Following the methodology in Sec. II A, the complex-frequency
dispersion relation for the dissipative monatomic lattice is

λ2 þ 2ζ0ω0 sin
2 κ

2

� �
λþ ω2

0 sin
2 κ

2

� �
¼ 0, (7)

where

ω0 ¼ 2

ffiffiffiffi
k
m

r
; ζ0 ¼

2η
ω0

(8)

and η ¼ c=m is defined as the damping intensity.39 The dispersion
relation in Eq. (7) can be parametrized as

λ2 þ 2ζ sωnλþ ω2
n ¼ 0, (9)

with the solutions in Eq. (4) and following parameters:

ζs ¼ ζ0 sin
κ

2

� ���� ���, (10a)

ωn ¼ ω0 sin
κ

2

� ���� ���: (10b)

Note that ωn is the dispersion relation of an undamped mon-
atomic lattice. Band diagrams of complex-frequency dispersion
relations consist of (1) the damped frequency ωd ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2s

q
(the imaginary part of λ ) and (2) the damping ratio ζs (the real
part of λ normalized by �jλj), as seen in Fig. 1(b). The damped
frequency for the monatomic lattice becomes smaller as the
damping quantity increases (reflected by the quantity ζ0), and
the damping effect is more pronounced at larger wavenumbers.
The corresponding damping ratios increases as ζ0 becomes larger,
as analytically depicted by the amplitude of the sine function in
Eq. (10a).

To assess the overall damping performance, we now compute
an averaged damping-performance metric developed by Hussein
and Frazier,24 which is based on integrating the damping ratio

quantity as (we here normalize by π),

ζavg ¼
1
π

ðπ
0
ζ sdκ (11)

which, for the monatomic lattice, can be analytically calculated in
closed-form as

ζavg ¼
2
π
ζ0: (12)

In Fig. 2, we plot ζavg as a function of the non-dimensional
quantity ω0=η. The choice of the quantity ω0=η is intended to
provide an insight into the amount of prescribed damping in the
structure relative to its elastic and inertial properties. For a constant
value η, if the system has a higher ω0, then the prescribed damping
becomes small relative to the elastic and inertial properties, thus
yielding smaller damping ratios and ζavg. Similarly, for a given ω0,
increasing η results in a higher value of ζavg (and vice versa) as
expected.

III. SCISSOR-LIKE ELECTROMECHANICAL
METAMATERIAL (SEMM)

A. Design

Here, we propose a new structural design utilizing piezoelec-
tric materials (with resonant shunting circuit) and scissor-like
mechanism to exhibit higher metadamping than conventional

FIG. 1. (a) Schematics of a dissipative
monatomic lattice and its unit cell defi-
nition. (b) Complex dispersion relations
for the monatomic lattice, constituting
the damped frequency (left) and corre-
sponding damping ratio (right), under
different damping conditions.

FIG. 2. Averaged damping-performance plot (in units of 1=π ) for a monatomic
lattice with a swept range of ω0=η. Circles represent the analytical solution in
Eq. (12).
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dissipative metamaterials.24 The key mechanism of the proposed
SEMM consists of rigid massless linkage with an angle θ, con-
nected via moment-free joints (bearings) as illustrated in Fig. 3(a).
Leveraging the shape of the scissor-like configuration, a piezoelec-
tric material (modeled as a spring kp and a viscous damper c) is
configured vertically and its terminals are fixed on the tips of the
rigid linkage [Figs. 3(b) and 3(c)]. As a result, a larger mechanical
strain can be imposed on the piezoelectric material by virtue of the
displacement amplification effects of the scissor-like structure, in
response to displacements in the nodes ui. Such a scissor-like struc-
ture has been shown to increase the voltage output in piezoelectric
materials.35,36 Concentrated masses ma are located at the top and
bottom nodes of the rigid linkage, while masses m0 are located at
the rest of the nodes. The rigid links and tip masses ma collectively
constitutes an inertial amplifier.19–22 Owing to the electromechani-
cal coupling in piezoelectric materials, dissipating the mechanical
energy in a shunted SEMM can be controlled by the electrical
energy generated over the resistive element in the shunting circuit,
which can be conveniently tuned to obtain the desired dissipative
performance. As such, SEMMs are intended to offer metadamping
enhancement (via the amplification mechanisms) with mechanical
and electromechanical tunability.

B. Derivations of electromechanically coupled
equations of motion

For small vibrational amplitudes, the planar motion of masses
ma in the x- and y-directions are expressed by the joints displace-
ments ui, such that21

δx ¼ 1
2

ui�1 þ uið Þ, (13a)

δy ¼ 1
2
cot (θ) ui�1 � uið Þ: (13b)

Next, we express the motion equations of masses ma in terms
of δx and δy and then apply a transformation to represent them in

term of ui�1 and ui and ultimately express them using the degrees
of freedom zTi ¼ {ui�1 ui vi}. Both masses ma collectively move to
the right with displacement δx, while the upper (lower) mass
moves upward (downward) with a displacement δy1 (δy2). Note
that the vertical spring only couples the masses in the y-direction.
Also, the voltage depends upon the piezoelectric patch’s displace-
ment, and in turn, it also affects the vibration response due to the
inverse piezoelectric effect. The coupled governing equations of the
electromechanical system, assuming a complex frequency, are41

2maλ
2δx ¼ 0, (14a)

maδy1λ
2 þ c(δy1 � δy2)λþ kp(δy1 � δy2)þ ϑvi ¼ 0, (14b)

maδy2λ
2 þ c(δy2 � δy1)λþ kp(δy2 � δy1)� ϑvi ¼ 0, (14c)

Cλþ 1
Z

� 	
vi þ ϑ(δy2 � δy1)λ ¼ 0, (14d)

where vi is the piezoelectric voltage of the ith unit, C is its equiva-
lent capacitance, ϑ is the electromechanical coupling coefficient,
and Z is the impedance of the electrical loading of the piezoelectric
shunting circuit. Here, the electrical loading impedance is
Z ¼ Rþ Lλ, where R and L are the resistive and inductive loading
of the electrical circuit. This choice of electrical loading is intended
to induce an electromechanical resonance in the vicinity of the
RLC circuit resonance ωR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=(CL)
p

, which introduces a second
dispersion branch and opens a locally resonant bandgap similar to
the case of mechanical AMs.

Finally, based on the relationship of the displacements δx and
δy1,2 to ui�1,i provided in Eq. (13), a transformation matrix Q can

FIG. 3. (a) A physical realization of the proposed SEMM mechanism. (b) Schematics of the SEMM lumped parameter model, consisting of discrete masses m0 and ma,
massless rigid linkage, and an electromechanical piezoelectric element (modeled as spring kp and damper c). (c) Unit cell definition of SEMM and its related mechanical
and electromechanical properties. (d) Illustrative schematic showing the inertial-amplifier’s equivalence to an ideal inerter.40
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be obtained. Hence, we write

δx
δy1
δy2
vi

8>><
>>:

9>>=
>>;

¼ Qzi; Q ¼
1
2

1
2 0

1
2 cot (θ) � 1

2 cot (θ) 0
� 1

2 cot (θ)
1
2 cot (θ) 0

0 0 1

2
664

3
775: (15)

After post- and pre-multiplying the equations of motion with
Q and QT, respectively, we obtain Eq. (1) with the following effec-
tive mass, damping, and stiffness matrices:

M ¼
ma þ 2b �2b 0
�2b m0 þma þ 2b 0

� ϑ
C cot (θ)

ϑ
C cot (θ) 1

2
4

3
5, (16a)

C ¼
c cot2 (θ) �c cot2 (θ) 0
�c cot2 (θ) c cot2 (θ) 0

� 2ϑ
C cot (θ)ζpωR

2ϑ
C cot (θ)ζpωR 2ζpωR

2
4

3
5, (16b)

K ¼
kp cot2 (θ) �kp cot2 (θ) ϑ cot (θ)
�kp cot2 (θ) kp cot2 (θ) �ϑ cot (θ)

0 0 ω2
R

2
4

3
5, (16c)

where b ¼ ma( cot2 (θ)� 1)=4 is the inertial-amplifier’s equivalent
inertial (acceleration) coupling constant (often referred to as the
inertance42) and ζp ¼ R=(2LωR) is the stand-alone damping ratio
of the RLC circuit. Note here that the lumped mass m0 at the ui
node can be added directly to the mass matrix diagonal, given the
discrete nature of the considered problem.

Revisiting Eq. (16), two observations can be made from the
equations. First, the form of the mass matrix reveals the working
mechanism of the scissor-like configuration when masses ma are
added. Essentially, the dynamics of the scissor-like mechanism and
masses ma combination can be mapped to an ideal inerter, with
inertance b, and its static mass is equivalently split on the two
nodes as depicted in Fig. 3(d) (see Ref. 40 for more details). If
ma ¼ 0, then the inertial-amplification effect is neutralized, given
that the coupling inertance becomes zero, i.e., b ¼ 0. Second, the
displacement amplification effect of the scissor-like structure
remains intact as can be observed from the term cot (θ) that is mul-
tiplied by the electromechanical coupling term ϑ in all matrices,
regardless of the mass ma value. Such additional term, i.e., cot (θ),
amplifies the electromechanical coupling, which, in turn, amplifies
the voltage output of the piezoelectric material at smaller angles θ.

C. Dispersion characteristics of SEMM with
resistive-inductive loading

In this section, we derive the dispersion relation of SEMM
with a piezoelectric shunting circuit of a resistor and an inductor in
a series configuration [Fig. 3(c)]. The structural damping c is
neglected in this analysis to emphasis the damping tunability via
the shunting circuit. We also choose a mass parametrization of
ma ¼ m(1� μ)=4 and m0 ¼ m(1þ μ)=2, such that the total
mass of a unit cell is m and the value of the contrast parameter
μ [ [�1, 1] dictates the mass distribution on the rigid linkage

nodes. For instance, μ ¼ 1 (μ ¼ �1) renders ma ¼ 0 (m0 ¼ 0) and
m0 ¼ m (ma ¼ m=2). Following the methodology in Sec. II A and
introducing

T ¼
e�iκ 0
1 0
0 1

2
4

3
5: (17)

A few mathematical manipulation results in the complex-
frequency dispersion relation of the SEMM unit cell

λ4 þ α3λ
3 þ α2λ

2 þ α1λþ α0 ¼ 0, (18)

such that

α3 ¼ 2ζpωR, (19a)

α2 ¼ ω2
pq̂(1þ γ)þ ω2

R, (19b)

α1 ¼ 2ζpωRω
2
pq̂(1þ γ), (19c)

α0 ¼ ω2
pω

2
Rq̂, (19d)

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffi
kp=m

p
, γ ¼ ϑ2

kpC
is a non-dimensional electromechani-

cal coupling variable, and

q̂ ¼ 4 cot2 (θ) sin2 ( κ2 )

cos2 ( κ2 )þ 1�μcos(2θ)
1�cos(2θ) sin

2 ( κ2 )
: (20)

For γ ¼ 3, θ ¼ π=3, μ ¼ 0, and ωp ¼ ωR ¼ 1 rad/s, Fig. 4(a)
shows the damped frequency and damping ratio as a function of
the non-dimensional wavenumber for an increasing damping ζp.
As expected, the dispersion diagrams show that the damping ratio
becomes higher as the damping intensity increases and, conversely,
the damped frequency becomes smaller in both the acoustic (first)
and optic (second) branches. Owing to the structural configuration
and electromechanical nature of SEMM, the damping ratio output
can be further controlled based on the non-dimensional electrome-
chanical coupling γ and the angle θ, while maintaining the pre-
scribed damping unchanged, as observed in Figs. 4(b) and 4(c)
(ζp ¼ 0:5 is used). Having higher γ, for instance, increases the
damping ratios in the acoustic branch, while decreases them in the
optic branch. However, the overall sum of damping ratio curves is
higher with higher γ (dotted lines in Fig. 4 bottom panels). In con-
trast, an increase (a decrease) in the angle θ decreases (increases)
the damping ratios in the acoustic (optic) branch and the overall
sum of damping ratios tend to be higher with smaller angles. In all
cases, the damping ratio for the acoustic branch is overall higher
than that of the optic branch, implying that energy can be dissi-
pated at a larger rate for relatively lower frequencies.

D. Metadamping analysis

In this section, we compare the dissipative performance of
SEMM to more traditional systems, such as ML and AM. To
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provide a fair comparison between the different periodic structures,
it is essential to have all considered systems exhibiting equivalent
(i) static mass and effective stiffness (ensured via an identical sonic
speed, i.e., initial slope of the dispersion relation), (ii) damping
intensity, and (iii) number of degrees of freedom per unit cell.24,25

In what follows are two examples of SEMM with different shunting
circuits to demonstrate its capability in increasing damping
performance.

1. SEMM with short circuit

We first investigate the SEMM dissipative properties when the
piezoelectric material is short circuited, rendering the voltage equal
to zero (vi ¼ 0). As such, the mass, damping, and stiffness matrices
in Eq. (16) reduce to 2� 2 matrices after eliminating the columns
and rows pertaining to the voltage variable vi. Hence, SEMM effec-
tively becomes a variant of the monatomic lattice, which we refer
to here as equivalent monatomic lattice (EML) to distinguish from
the traditional monatomic lattice. Therefore, it is of interest to
compare EML dissipative performance to the traditional mon-
atomic lattice in Fig. 1. In such a case, and with identical damping
intensity η ¼ c=m and static mass m, it can be shown that the
resulting dispersion relation of EML is given by

λ2 þ ηq̂λþ ω2
pq̂ ¼ 0, (21)

which is similar to that of ML in Eq. (7). However, EML and ML
exhibit different sonic speeds and can be analytically obtained as

cML
0 ¼ a

2
ω0, (22a)

cEML
0 ¼ aωp cot (θ), (22b)

meaning that the condition ω0 ¼ 2ωp cot (θ) must be satisfied to
ensure static equivalence (with identical lattice constant a).

For ωp=η ¼ 2 and θ ¼ π=5, Figs. 5(a) and 5(b) show the
complex dispersion diagram with the damped frequency (normal-
ized in terms of ωp ) and damping ratio. It is seen that EML exhibits
higher damping ratios relative to ML, which carries on for a wide
range of ωp=η values, as reflected by ζavg calculations in Fig. 5(c).
This improvement is dependent on the choice of system parame-
ters, which may be hindered at selective parameter ranges. To show
such dependence, we calculate the relative damping performance,
or metadamping, of EML and ML by introducing the metric24

Z ¼ ζEML
avg � ζML

avg , (23)

which quantifies the difference between the averaged damping ratio
of the EML to traditional ML. As shown in the metadamping
contour map in Fig. 5(d), smaller angles θ and a larger positive μ
generally improve the dissipation performance, indicated by the
positive Z values (i.e., ζEML

avg . ζML
avg). More interestingly, the case of

μ ¼ 1 (no inertial amplification effects), in combination of smaller
θ, achieve the highest values of Z. This may be explained in light of
the inertial amplification effects from mass ma. The larger artificial

FIG. 4. Complex dispersion relations of SEMM, showing the damped frequency (top) and the corresponding damping ratio (bottom) with varying (a) damping ζp, (b) non-
dimensional electromechanical coupling γ and (c) amplifier’s angle θ.
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masses on the nodes due inertial amplification may hinder the
motion of the nodes and, thus, yielding an overall smaller displace-
ments δy, and, consequently, smaller force on the damping
element. It is important to note that large angles θ, typically greater
than 45�, also deteriorates the dissipative performance (indicated
by the negative Z) as it results in cot (θ) , 1, meaning than the
force is rather reduced in the damper element.

2. SEMM with resistive-inductive circuit

Next, we investigate the damping performance of a resonant
SEMM relative to a statically equivalent AM, as shown in Fig. 6.
The static mass and damping equivalence of the structure are
ensured by setting the total mass of AM to be m1 þm2 ¼ m
(m1 ¼ m2 ¼ m=2) and a damping intensity of η ¼ c2=m2 ¼ R=L.
That is, the damping in AM is concentrated in its resonator (i.e.,
c1 ¼ 0 and c2 ¼ c) to be comparable to the SEMM case (where the
damping is only in the resonant electrical circuit with neglected
structural damping). Finally, and assuming identical lattice

constant a for all systems, the analytical sonic speeds for AM and
SEMM, respectively, are derived as

cAM0 ¼ aω1ffiffiffi
2

p ; cSEMM
0 ¼ aωp cot (θ), (24)

implying that the following condition has to be satisfied to ensure
the static equivalence:

ω1 ¼
ffiffiffi
2

p
ωp cot (θ); ω1,2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1,2=m

p
: (25)

To satisfy the sonic speed equivalence for any combination of
system parameters, we embed the condition for equivalent sonic
speed [Eq. (25)] into the dispersion relation of the AM system. For
both systems, the dispersion relation can be generally expressed
using Eq. (18), albeit with different α coefficients. To facilitate this
process, the local resonant frequencies of AM and SEMM are
assumed identical, meaning that ω2 ¼ ωR. As a result, a stiffness
ratio parameter can be defined as rk ¼ ω2

p=ω
2
R ¼ kp=(2k2). This

procedure is also intended to define an equivalent stiffness ratio for
the SEMM case, which is normally challenging given its structural
configuration and electromechanical nature. After normalizing
with ωR, the resulting dispersion coefficients are tabulated in
Table I.

To compare the dissipation performance, we enforce equiva-
lent prescribed damping amount for all systems, which is reflected
by the equivalent value of ζ ¼ η=(2ωR) in Table I. Figure 7 shows
examples of the complex band structure for AM and SEMM with
rk ¼ 1, ζ ¼ 0:5 and, for SEMM only, μ ¼ 0, γ ¼ 3, and θ ¼ π=5.

FIG. 5. Complex dispersion relations for EML and ML, constituting the damped frequency (a) and corresponding damping ratio (b). In subfigure (a), the undamped disper-
sion relations are provided for reference. (c) Averaged damping plot for EML and ML as a function of various values of the resonant frequency relative to the damping
intensity, i.e., ωp=η, demonstrating the metadamping phenomenon (shaded region). (d) Metadamping contour Z for a swept range of parameters μ and θ.

FIG. 6. Schematics of the acoustic metamaterial (AM) and scissor-like electro-
mechanical metamaterial (SEMM).

TABLE I. Coefficients of the dispersion relation for the different lattice structures
(i.e., AM and SEMM) with equivalent sonic speed. Note that α4 = 1 for both cases
and �q is defined as �q ¼ 4 sin2 (κ=2).

Type α3 α2 α1 α0

AM 4ζ 2þ 2rk cot2 (θ)�q 4ζrk cot2 (θ)�q 2rk cot2 (θ)�q
SEMM 2ζ rk(1þ γ)q̂þ 1 2ζrk(1þ γ)q̂ rkq̂
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As can be seen, all dispersion relations have equivalent initial sonic
speeds and SEMM has collectively higher damping ratios. This is
evident from the sum of the damping ratio curves corresponding to
the acoustic and optic modes.

Next, we show the metadamping phenomenon in Fig. 8(a)
based on integrating the averaged damping ratios of the acoustic
and optic branches as a function of the wavenumber [Eq. (11)] for
a swept range of resonant frequencies relative to the damping
intensity ωR=η ; 1=(2ζ). The results reveal that SEMM has a
larger damping performance relative to AM, as indicated by the
higher values of ζavg. This result, in fact, varies based on the design
parameters (rk, γ, μ, and θ). To shed light on their effect using the
metadamping metric Z, we show the metadamping contours for a
swept range of rk, γ, and μ vs the angle θ, while maintaining the
other variables constants (ζ is chosen as 0.05 in all cases). As seen
in Fig. 8(b), the metadamping Z increases with the increase in the
non-dimensional electromechanical coupling γ (with μ ¼ 0 and
rk ¼ 1). Similar improvement is also observed for increasing stiff-
ness ratio rk [Fig. 8(c) with γ ¼ 3 and μ ¼ 0]. Last, moving toward
positive contrast parameter, μ yields a rather subtle improvement in
metadamping, which is more noticeable at smaller angles [Fig. 8(d)
with γ ¼ 3 and rk ¼ 1]. In all three cases, meanwhile, smaller angles
θ tend to increase the metadamping performance. The enhance-
ments from decreasing θ and increasing γ can be attributed to the
increased voltage output in the electrical circuit from amplified dis-
placement on the piezoelectric and stronger coupling between the

mechanical and electromechanical domains, respectively. As a conse-
quence, SEMM is capable of dissipating more energy in the electrical
circuit due the elevated voltage outputs.

E. Complex dispersion validation via a finite system

To verify the theoretical predictions of the complex dispersion
relations presented earlier, we simulate a finite lattice of each lattice
type with a fixed-free boundary condition and 10 unit cells. In
general, the equation of motion for a dissipative dynamical system
can be expressed in a state-space formulation as

_x ¼ Ax þ B; A ¼ 0 I

�M�1K �M�1C

� �
;

B ¼ 0

M�1f ,

� � (26)

where x ¼ {z _z}T and f are the state and forcing vectors, respec-
tively. For a free-vibration problem and assuming x ¼ x̂eλt , the
state-space equation becomes an eigenvalue problem of the form
Ax̂ ¼ λx̂. As a result, we can compute the generally complex eigen-
values λ, and its corresponding damping ratio and damped fre-
quency can be calculated in a similar manner to that of the
complex dispersion relation given in Eq. (4). Then, we project the
complex modes from the finite structure to a dispersion diagram
consisting of the damped frequency and its corresponding damping

FIG. 7. Comparison of the complex dispersion relations for ML, AM, and,
SEMM, showing the damped frequencies (top) and their corresponding damping
ratio (bottom). Note here that the damped frequency is normalized based on the
resonant frequency ωR.

FIG. 8. (a) Averaged damping-performance metric ζavg as a function of various
values of the resonant frequency relative to the damping intensity, i.e., ωAM=η,
showing the enhanced metadamping region. (b)–(d) Parametric sweep of the
metadamping metric Z for a swept range of the amplification angle θ and (b)
non-dimensional electromechanical coupling coefficient γ, (c) stiffness ratio rk
and (d) the contrast parameter μ.
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ratio, a validation method that has been suggested by Aladwani and
Nouh.43 As shown in Fig. 9, an excellent agreement is observed
between the theoretical unit cell analysis and the finite structure
analysis.

F. A special case: SEMM with resistive loading

In this section, we investigate a special case of the shunting
circuit of the piezoelectric element, which assumes resistive-only elec-
tric loading. Following a similar procedure provided in Sec. III C and
assuming μ ¼ 1, the dispersion relation of SEMM with resistive
loading can be obtained

λ3 þ 1
τc
λ2 þ (1þ γ)ω2

p cot
2 (θ)�qλþ ω2

p

τc
cot2 (θ)�q ¼ 0, (27)

where �q ¼ 4 sin2 (κ=2) and τc ¼ RC is the RC circuit time constant.
Of specific interest here is to see the system damping performance
as the piezoelectric shunting circuit transition from the short circuit
(R ! 0) to the open circuit states (R ! 1). In both cases, we get a
dispersion relation reminiscent to that of an undamped monatomic
lattice, albeit with a different cut-off frequency and sonic speeds,
owing to the stiffening of piezoelectric as the circuit transitions to
open state. The dispersion relation for the short circuit condition
becomes

ω ¼ 2ωp cot (θ) sin
κ

2

� ���� ���, (28)

while the open circuit counterpart is

ω ¼ 2ωp

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
cot (θ) sin

κ

2

� ���� ���: (29)

Evaluating the derivative of the dispersion relation results in
the following formulae for the sonic speeds:

cs0 ¼ aωp cot (θ), (30a)

co0 ¼ aωp

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
cot (θ), (30b)

for the short and open circuit conditions, respectively. Having such
transition in the sonic speed with increasing the resistance (the
damping in the system) is unique to SEMM with resistive loading,

which may not have an equivalent mechanical system. This hinders
the comparison of its dissipative performance relative to other dis-
sipative elastic structures, such as AM and ML.

To observe the transition of the dispersion relation from the
open circuit to short circuit configurations, we plot several SEMM
dispersion relations with varying time constants, as shown in
Figs. 10(a) and 10(b) (for ωp ¼ 1 rad/s, θ ¼ π=5, and γ ¼ 3). As
can be seen, the initial slope of the dispersion relation (i.e., sonic
speed) remain nearly the same [at about cs0 in Eq. (30a)] for small

FIG. 9. Comparison between the
damped frequency and corresponding
damping ratio computed from the finite
structure modes and the unit cell dis-
persion relation, for monatomic lattices
(ML and EML) and metamaterial lat-
tices (AM and SEMM).

FIG. 10. (a) and (b) Complex dispersion relations and (c) metadamping metric
response (with varying electromechanical coupling) for the SEMM system with
RC circuit as the circuit transitions from short to open circuit states (i.e., an
increasing time constant τc).
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τc. As τc becomes larger, the sonic speed eventually transition to a
larger value corresponding to the open circuit state, i.e., co0 in Eq.
(30b). It is also observed that, for some time constant values, the
damping ratio has a distinctive peak at a given wavenumber, which
shift towards κ ¼ 0 as τc increases.

The averaged damping ζavg can be computed for a swept
values of the time constant τc to shed light on the dissipation per-
formance during the transition from short circuit to open circuit
states [Fig. 10(c)]. Indeed, the open (τc ! 1) and short (τc ! 0)
circuit conditions render ζavg nearly equal to zero (effectively
undamped), while it peaks at some point during the transition. The
location of the peak seems to shift depending on the electrome-
chanical coupling γ and approximately lies midway of the simu-
lated values of τc [ [10�4, 104].

IV. CONCLUDING REMARKS

In this paper, we have presented a novel concept of scissor-like
electromechanical metamaterial (SEMM) that offers enhanced and
tunable metadamping through coupling of electromechanical pie-
zoelectric materials with the scissor-like configuration. We have
derived the closed-form solution of the dispersion relation for the
proposed structure and compared its damping performance to a
statically equivalent acoustic metamaterial (AM) and monatomic
lattice (ML) with identical prescribed damping. Based on the meta-
damping metric, SEMM with resistive-inductive (short) electrical
circuit condition exhibits an overall higher damping capacity rela-
tive to statically equivalent AM (ML). In addition, metadamping of
the SEMM is shown to be tunable via mechanical (i.e., angle θ)
and electromechanical (i.e., piezoelectric shunting circuit and cou-
pling coefficient γ) means. We have also shed light on the damping
performance of SEMM with resistive-only loading as the piezoelec-
tric shunting circuit transitions from short to open circuit condi-
tions. We envision that the established analytical and numerical
frameworks will be useful in broadband vibration mitigation in
mechanical and aerospace systems and will pave the way for other
types of applications pertaining to wave phenomena.
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