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Existence of corner modes in elastic twisted kagome lattices
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This Letter investigates the emergence of corner modes in elastic twisted kagome lattices at a critical twist
angle, known as the self-dual point. We show that special types of corner modes exist and they are localized at
very specific types of corners independent of the overall shape of the finite lattice. Moreover, these modes appear
even in the perturbed lattice at the corners with mirror planes. By exploring their counterparts in electronic
systems, we attribute such corner modes to charge accumulation at the boundary, which is confirmed by the plot
of charge distribution in a finite lattice.
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In the early 1990s, by drawing an analogy to the quan-
tum theory of solids, it was theoretically and experimentally
shown that acoustoelastic waves propagating through a peri-
odic array of scatterers exhibit frequency regimes in which
the waves cannot propagate [1–3], analogous to the electronic
band gaps in semiconductors [4–7]. Since then, the study of
periodically engineered artificial materials (also referred to
as phononic crystals and metamaterials) has matured into an
exciting research field. The band gaps and dispersive prop-
erties of phononic crystals and metamaterials [8–10] have
resulted in unconventional approaches in various applications
including sound and vibration attenuation [11,12], cloaking
[13], lensing [14,15], subwavelength imaging [16], and energy
harvesting [17].

In recent years, the discovery of topological insulators in
electronic systems has led to the study of the topological
phases of phononic crystals, inspired by their counterparts
in photonic systems [18]. A mechanical system is said to be
topological or topologically protected when certain conditions
and symmetries are present in the dynamical system. For
instance, topological edge states observed in acoustic [19] and
elastic [20] kagome lattices are attributed to the preserved
C3 symmetry in the lattice structure after the degeneracy at
the Dirac cone at the K point is lifted (a further discussion
on the symmetry types in mechanical metamaterials can be
found in Ref. [21]). The growing research interest in the
topological phases in mechanical systems stems from their
special wave properties that offer immunity against defects
and imperfections, no wave backscattering, as well as uni-
directional wave transmission [18,22]. Originally introduced
in electronic/quantum systems, various types of topological
states in mechanical systems have been studied. These include
the quantum Hall effect [23–25], the quantum spin Hall effect
[26–28], the quantum valley Hall effect [20,28–31], Majorana
edge states [32], edge states in polyatomic lattices [33], and
topological pumping in quasiperiodic systems [34,35]. More
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recently, higher-order topological insulators have been dis-
covered, offering the unique ability to exhibit in-gap (d −
2)-dimensional modes [36–38], which goes beyond regular
(d − 1)-dimensional edge states in other topological systems,
where d is the dimension of the space.

This effort is particularly focused on the emergence of cor-
ner modes in a class of twisted kagome lattices with in-plane
motion. The considered twisted kagome lattice is an example
of Maxwell lattices, which have been at the heart of recent
developments in the field of topological mechanics [39–42].
The configuration of the kagome lattice is shown in Fig. 1(a),
which is inspired from a recent study by Fruchart et al. [43].
A unit cell or lattice is characterized by three discrete equal
masses m, each of which moves in plane in the x and y direc-
tions, making a total of six degrees of freedom per unit cell.
The masses at the lattice sites are interconnected via central
force bonds of stiffness k, and its shape is controlled by a twist
angle θ , with perfect hinges at the nodes. As such, the unit cell
dynamics exhibit a very interesting property, referred to as du-
ality, which means that two different configurations (or twist
angles) can exhibit identical dispersion relations [43]. The
duality occurs about a critical angle θc = π/4; hence, a lattice
with twist angles θc ± δθ exhibits an identical dispersion rela-
tion. Such a critical point is referred to as a self-dual point. The
dispersion relation of a self-dual kagome lattice (θ = θc) has
three distinct degenerate dispersion bands with two identical
copies of dispersion branches on top of each other, as shown
in Fig. 1(b), computed by calculating the eigenfrequencies ω

of the unit cell’s dynamical matrix at selected values of a wave
vector k = {kx, ky}. See the Supplemental Material (SM) [44]
for calculation details (see also Refs. [43,45] therein). The
static and dynamic behaviors of elastic twisted kagome lat-
tices are well studied in literature. Hutchinson and Fleck [46]
investigated the collapse mechanisms (also known as floppy
modes) of regular kagome and strain-producing mechanisms
in twisted kagome lattices. Later, Sun et al. [47] studied
the bulk and surface zero-frequency floppy modes of regular
and twisted kagome lattices under different boundary condi-
tions. Later, Rocklin et al. [48] demonstrated the topological
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FIG. 1. (a) A finite structure of a twisted kagome lattice and its
unit cell definition. The first irreducible Brillouin zone (� − M −
K − �) is depicted for reference. (b) Dispersion band diagram of a
self-dual kagome lattice (i.e., for θ = pi/4) depicting three doubly
degenerate dispersion branches. Note that � = ω

√
m
k .

transition of a deformed kagome lattice with uniform soft
twisting and the resulting transformations in floppy edge
modes. Recently, the continuum approach has been applied
to explain the elastic behavior of twisted kagome lattices for
zero-frequency modes [49] and topological edge soft modes
in topological kagome lattices [50]. More recently, Gonella
[51] elucidated the dual nature of the twisted kagome lattice,
originally put forward by Fruchart et al. [43], using bido-
main lattice structures and demonstrated the dependence of
the duality behavior on the underlying mechanism of cell
deformation. On the other hand, following the work of Xue
et al. [37] on an acoustic higher-order topological insulator
on a kagome lattice, Wu et al. [52] experimentally observed
second-order topologically protected corner states in a regular
elastic kagome lattice. While rich in dynamics, studies of the
corner modes in elastic twisted kagome lattices are lacking. It
is therefore the aim of this study to demonstrate the existence
of corner modes in a twisted kagome lattice and to explain
their relationship to structural symmetries and bulk polariza-
tion, as well as to propound the necessary conditions for their
manifestation. To this end, we also explore the analogous
electronic system to explain the existence of corner modes via
bulk polarization and Wannier centers.

We first demonstrate the emergence of corner modes con-
sidering a finite self-dual kagome lattice having a shape of a
regular hexagon. The self-dual kagome lattice has three mirror
symmetry planes oriented at angles 0, π/3, and 2π/3 (mea-
sured counterclockwise from a horizontal line), which pass
through the corners of the hexagonal structure. We choose a
hexagon lattice size of seven unit cells on each edge, which is
sufficiently large to observe the in-gap corner eigenfrequen-
cies, as shown in Fig. 2(a). There exist six corner modes (one
for each corner) at an in-gap frequency of � = ω

√m
k = 1.

The mode shape obtained by a linear combination of six
eigenmodes at � = 1 is depicted in Fig. 2(b). It shows highly
localized deformation at the six corners of the hexagonal
structure. Interestingly, the mode shapes corresponding to the
corner modes show zero deformation of the lattice site lying
on the mirror symmetry planes, a behavior that extends to all
lattice sites of the same type in the vicinity of the corner. Other
modes appearing in the band gap [Fig. 2(a)] are edge modes
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FIG. 2. (a) Eigenfrequency solutions for a finite hexagon-shaped
self-dual kagome lattice with six corner modes at an in-gap frequency
of � = 1 and (b) the mode shape for the corresponding in-gap corner
modes localized at the corners of a hexagon. (c) Eigenfrequency
solutions for a finite parallelogram-shaped self-dual kagome lattice
with two corner modes at an in-gap frequency of � = 1 and (d) the
mode shape for the two in-gap corner modes localized at the two
corners of a parallelogram which lie on a mirror symmetry plane.

localized around the edges of the hexagon, which appear in
pairs due to the duality symmetry.

The appearance of corner modes at � = 1, in fact, depends
on the shape of the corner and the plane of symmetry. To
demonstrate this dependence, consider a finite structure with
an overall shape of a parallelogram, which only has a single
mirror symmetry plane. While the structure has four total
corners, only two corner modes appear at � = 1 in the eigen-
frequency calculations as depicted in Fig. 2(c). As anticipated,
the mode shapes of these corner modes are localized at the
corners located at the symmetry planes as shown in Fig. 2(d).
This example emphasizes the importance of the existence of
mirror symmetry for the manifestation of corner modes. An
intriguing observation from both analyzed finite structures
is that the corner modes always appear at a normalized fre-
quency of � = 1.

The corner modes described above are specific to the
self-dual point. The finite hexagon- and parallelogram-shaped
lattices away from the self-dual point show corner modes
appearing at different frequencies below and above the fre-
quency � = 1. For instance, the eigenfrequencies of the
corner modes for a finite hexagon-shaped lattice along with
the mode shapes for twist angles θ = 35◦ and θ = 55◦ are
shown in Figs. 3(a) and 3(b), respectively. The eigenfrequen-
cies for the two configurations are exactly identical because
of the duality and the corner modes appear in groups of three,
one group at � = 0.976 and the other group at � = 1.035.
The set of corners localized at the same frequency is of
a similar nature, as can be seen from the lattice geometry.
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FIG. 3. Eigenfrequency solutions and mode shapes of the corner modes of a finite hexagon-shaped twisted kagome lattice for twist angles
(a) θ = 35◦ and (b) θ = 55◦. Note that the kagome lattice shrinks with increasing twist angle as the two triangles in the unit cell come closer
to each other; hence, the hexagonal lattice at θ = 55◦ is smaller than the hexagonal lattice at θ = 35◦.

Interestingly, the frequency at which the localization happens
at a particular set of corners switches to the other corner
mode frequency while going from one configuration of the
dual lattice pair to the other. For example, the localized set
of corners at � = 0.976 for θ = 35◦ is similar to the localized
set of corners at � = 1.035 for θ = 55◦. The transition occurs
about the self-dual point where all six corners are localized at
a single frequency of � = 1. Furthermore, the deformation of
the lattice site of corner unit cells lying on mirror symmetry
planes is not zero for the corner modes appearing at twist an-
gles θ = 35◦ and θ = 55◦ which happens to be a characteristic
feature at the self-dual point only.

Next, we investigate the emergence of edge and corner
modes by drawing analogies to electronic topological in-
sulators [53–59]. Electronic lattices can be described by a
tight-binding Hamiltonian H (k), which is a matrix in mo-
mentum space (k space) consisting of electronic hopping and
on-site potential terms. By analyzing the topological proper-
ties of H (k), we can determine whether there are electronic
eigenstates of the Hamiltonian that are localized at the edges
or corners of the crystal. Similar techniques can also be ap-
plied to the dynamical matrix D(k) in the elastic system. If
corner or edge modes exist for the electronic system whose
Hamiltonian H (k) has the same matrix form as D(k), then
these modes also exist for the corresponding elastic system.

The existence of corner or edge modes in electronic sys-
tems can be examined by computing the Wannier centers [58],
which represent the center of the electric charge inside the
unit cells for each band. Wannier centers are determined by
the wave functions in each band, and the total electric po-
larization can be obtained by summing Wannier centers over
all the occupied bands. In the presence of crystalline sym-
metries, the Wannier centers may be pinned to some specific
high-symmetry locations inside each unit cell called Wyckoff
positions. For example, in a simple one-dimensional (1D) lat-
tice with one electron in each unit cell as in Fig. 4, if the lattice
has mirror symmetry, then the Wannier centers can only be at
the Wyckoff position 1a at the center or 1b at the boundary
of each unit cell so that the mirror symmetry is preserved. In
Fig. 4(a), there is no edge mode. In Fig. 4(b), edge modes
appear because the Wannier center is at the boundary of each

unit cell. In Fig. 4(c), edge modes also appear because the
edge of the lattice does not have a complete unit cell, although
the Wannier centers are at the center of each unit cell in the
bulk.

To study the corner modes in a twisted kagome lattice,
consider the hexagon-shaped lattice setup in Fig. 5(a) in which
all the bonds have the same spring constant. We can treat the
dynamical matrix in momentum (k) space as the Hamiltonian
for some electronic systems. This system has crystalline sym-
metry p31m (wallpaper group 15) in addition to time-reversal
and duality symmetries. We choose the unit cell to be the blue
hexagon in Fig. 5(a) which preserves threefold rotation C3

and all the mirror symmetries. We next consider the electron
polarization for the lowest two bands. C3 symmetry quantizes
the polarization to be P = ep(a1 + a2), where e is the electron
charge, a1 and a2 are direct lattice primitive vectors (see
Fig. 1), and p = 0, 1/3, 2/3 corresponds to Wyckoff positions
1a or 2b [58]. However, the 2b position is not invariant under
mirror symmetry, therefore, with both C3 and mirror symme-
try, the polarization must vanish. For the two lowest bands to
have vanishing total polarization, their Wannier centers may
either both locate at the 1a position, or at the two distinct
2b positions. This can be further distinguished by analyzing
the symmetry representations of the two lowest bands at high-
symmetry momenta (�, K , and M in Fig. 1) [53].

* *

**

(a)

(b)

(c)

FIG. 4. (a) One-dimensional lattice with mirror reflection sym-
metry. The unit cells are denoted by black boxes. Wannier centers are
represented by red circles. Depending on the form of wave functions,
Wannier centers may locate at different Wyckoff positions 1a or 1b.
Edge modes appear in (b) and (c) in which the Wannier centers
appear at the edge of the crystal, as indicated by the red stars.
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FIG. 5. (a) Hexagon-shaped lattice setup with all springs having
the same spring constant. The unit cell is chosen to be the blue
hexagon which preserves all crystalline symmetry. Wyckoff positions
1a and 2b are labeled as red dots and blue stars, respectively. The
exposed 1a positions at the boundary lead to edge and corner modes.
(b) For the parallelogram lattice setup, the 60◦ corner does not have
exposed 1a positions, and the corner modes only appear at the 120◦

corners, as shown in Fig. 2. Charge accumulation at the edges and
corners of (c) hexagon-shaped and (d) parallelogram-shaped lattices.

In the presence of symmetries, wave functions at each
high-symmetry momentum point (�, K , and M) will trans-
form as irreducible representations (irreps) of the symmetry
group at that momentum point (little group). The high-
symmetry momentum �, K , and −K are invariant under
threefold rotation C3 and the three mirror symmetries (up to
a shift by some reciprocal lattice vector), and their little group
is C3v . The high-symmetry momentum M is invariant only
under one of the mirror symmetries, and the little group is
Cs. The Wannier centers are determined by the irreps of wave
functions at these high-symmetry momenta. In particular, if
the Wannier centers for the two lowest bands are both at the
1a position, then the irreps at � and K should be the irrep E
of group C3v , and the wave functions at M should have mirror
eigenvalues ±1. We can explicitly check the irreps at each
high-symmetry momentum by examining the eigenstates of
the dynamical matrix. The dynamical matrix D(k) in momen-
tum space is computed in the SM. A direct computation of the
irreps at the high-symmetry momentum points confirms that
the irreps at � and K are indeed E and the Wannier centers of
the two lowest bands are at the 1a position.

The existence of edge and corner modes can be inferred
from the Wannier centers. If the whole lattice has an integer
number of unit cells, there will be no charge accumulation
at the boundary because the Wannier centers are at 1a inside
each unit cell, similar to the scenario in Fig. 4(a). How-
ever, the finite lattice in Fig. 5(a) has incomplete unit cells
whose Wannier centers at 1a are exposed at the boundary, i.e.,
the red dots. These exposed Wannier centers lead to modes
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FIG. 6. (a) Eigenfrequencies of a perturbed hexagon-shaped lat-
tice self-dual kagome lattice, where the stiffness of thin (green) links,
as depicted in the inset, is made half of the original value (black
links). (b) Mode shape of the corner modes at � = 1, where the
localization of the modes is at the corners which are on the mirror
plane, and the number of mirror symmetry planes in the lattice
reduces from 3 to 1 because of the perturbation.

localized at the edges and corners, similar to Fig. 4(c). For
the parallelogram setup in Fig. 5(b), since there is no exposed
1a position at the 60◦ corners, the corner modes only exist
at the 120◦ corners. Note that although the corner modes here
are reminiscent of those in higher-order topological insulators,
the corner charge is not well defined because of the nonzero
edge charge. In this system, the bulk polarization measured in
a symmetric unit cell [the hexagon in Fig. 5(a)] is zero, and
according to Ref. [58] it should not have edge polarization
if the boundary contains complete unit cells. However, the
boundary termination of the twisted kagome lattice is incom-
mensurate with the symmetric hexagon unit cell. This leads to
incomplete unit cells at the boundary as in Figs. 5(a) and 4(c),
which is beyond Ref. [58] where complete unit cells at the
boundary are assumed. Therefore, the edge and corner modes
still emerge due to the incommensurate boundary termination
although the bulk polarization vanishes. This is an example of
termination-induced boundary modes.

The electronic charge distribution depicting the charge
accumulation at the corners and sides of the hexagon and
parallelogram are as shown in Figs. 5(c) and 5(d), respec-
tively. The density is obtained at each lattice site by summing
the squared norm of eigenvectors up to the corner modes at
frequency � = 1. The charge density is highest at the lattice
sites of unit cells which form the 120◦ angled corners. The
charge accumulated on the edges of the finite lattice is because
of the edge modes in the band gap. The charge accumulation
corresponds to a high quantum wave amplitude and by anal-
ogy the mechanical corner modes have a high elastic wave
amplitude at the corner unit cells.

Finally, we show an example of obtaining corner modes
at specific corners by carefully perturbing the unit cell links.
For the hexagonal structure analyzed in Fig. 2, we choose to
reduce the stiffness of two links by a factor of 1/2 [depicted
by thin (green) lines in the inset of Fig. 6(a)], such that a
single mirror symmetry plane is retained. Interestingly, the
dispersion relation of the perturbed lattice preserve the degen-
eracy of the bands as well as duality, i.e., identical dispersion
characteristics for lattices with twist angles equidistant from
the self-dual point. Note that the frequency � = 1 is still in the
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first band gap of the perturbed lattice. We construct a similar
hexagonal finite lattice as in Fig. 2, yet with perturbed links,
the eigenfrequency solutions for which are shown in Fig. 6(a).
In this case, only two corner modes are observed at � = 1
and they are localized around the corners of the hexagon,
which lie on the sole mirror symmetry plane of the perturbed
lattice. Once again, the mode shape shown in Fig. 6(b) is
characterized by zero deformation of the lattice site in the
corner unit cells, which lie on a mirror symmetry plane.

The corner modes observed in twisted kagome lattices are
reminiscent of the second-order topologically protected states
in acoustic [37] and elastic [52] regular kagome lattices which
rely on nontrivial bulk topology characterized by quantized
Wannier centers. The corner modes observed in these studies
are also shape dependent and appear only at the corners with
specific angles formed by the edges which cut through the
Wannier centers. Despite these similarities, the origin of the
edge and corner modes in twisted kagome lattices is distinct
from the other systems. In twisted kagome lattices, C3 and

mirror symmetries quantize the Wannier centers to Wyckoff
position 1a, leading to a vanishing bulk polarization. The edge
and corner modes emerge due to the incompatibility between
the lattice termination and bulk unit cell, even though the bulk
of the system is a trivial atomic limit with vanishing polariza-
tion. The corner modes are found to be robust to any defects
in the bulk (see Supplemental Material for more details
[44]).

In summary, we demonstrated the emergence of corner
modes in a self-dual kagome lattice that appear at certain cor-
ners. Such corner modes were explained in light of an analogy
to electronic insulators, which shows these boundary modes
are induced by the lattice termination that is incompatible
with the bulk unit cell. The robustness of the self-dual kagome
lattices and their reconfigurable wave localization at specific
corners may find different approaches in various applications
such as sensing and energy harvesting.

The authors extend their thanks to Dr. Kai Sun for fruitful
discussions on corner modes and Maxwell lattices.
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