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a b s t r a c t

Existing research in vibration-based energy harvesting has focused mostly on the har-
vesting of deterministic or stochastic vibrational energy available at a fixed position in
space. Such an approach is convenient for designing and employing linear and non-
linear vibration-based energy harvesters, such as base-excited cantilevers with piezo-
electric laminates. This work presents a mathematical framework for the harvesting of
one-dimensional bending waves propagating in infinite and semi-infinite beams as an
alternative. For this purpose, the fully coupled electroelastic problem with piezoelectric
patches bonded to a long slender beam is solved and conversion of incident wave energy
into usable electricitywhileminimizing the travelingwaves reflected and transmitted from
the harvester domain is analyzed. The analysis shows that the efficiency of power transfer
from elastic waves can be significantly improved beyond the typical wavelength matching
in terms of both efficiency and bandwidth by resistive–inductive loading. It is also shown
that enhancements to efficiency can be obtained by localized obstacles in mechanical do-
main, and fully anechoic boundary conditions can be obtained on finite beams by resis-
tive–inductive impedance matching. These enhancement methods are most effective and
practical when piezoelectric patch lengths and obstacle to patch distances are ∼> λ/4,
where evanescent fields become insignificant, while the model can readily accommodate
the presence of evanescent waves for arbitrary patch lengths. The validity and application
of the proposed methods are demonstrated with experimental case studies using a long
slender beam.
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1. Introduction

Over the last decade, several research groups have worked on energy harvesting in order to power small electronic
components by scavenging ambient energy available in their environment. The ultimate goal of these efforts is to create
self-powered electronic devices for various wireless applications ranging from structural health monitoring sensors to
medical implants [1–4]. Ambient energy exists in various forms, such as waste heat, solar, vibration, and flow energy.
While each of these sources of energy can be used to power remote sensors, the harvesting of vibrational energy has been
most heavily studied as a viable alternative source [5–10]. Among different transduction mechanisms that can be used for
vibration-to-electric energy conversion, piezoelectric transduction has become the most popular method due to the ease
of application, the high power density, and the relative maturity of the manufacturing methods of piezoelectric materials
at different scales [11]. Most of the piezoelectric energy harvesters are in the form of unimorph or bimorph cantilevered
beams. An alternating voltage output is obtained by applying harmonic base motion to the structure, and maximum power
is generated typically at the fundamental resonant frequency of the composite structure [12]. Although it is a common
practice to characterize the resonance behavior of a piezoelectric energy harvester with harmonic excitation, different
models may be required for other loading conditions, especially in the absence of standing waves. For instance, scavenging
energy from vibrations due to fluid–structure interaction requires a more complex analysis because of the coupling of
piezoelastic structure with the surrounding airstream [3]. In literature, flow energy harvesting through aeroelastic [13–20]
and hydroelastic [21–23] vibrations has been studied. Yet, researchers have given little effort to exploiting the energy of
traveling waves in fluids and structures. Few research groups have studied this area with a focus on polarization-patterned
piezoelectric solids [24], quarter-wavelength resonators [25], Helmholtz resonators [26,27], or phononic crystals [28–31].
In addition, Yang et al. [32] combined the sonic crystal concept with the Helmholtz resonators to improve acoustic
energy harvesting. Furthermore, acoustic metamaterials can be used to enhance energy harvesting by changing wave
propagation characteristics. For instance, Carrara et al. [33,34] implemented metamaterial-inspired structures in order to
guide, localize, and focus elastoacoustic waves for more efficient piezoelectric energy harvesting. Since wave equation is the
common theoretical basis for metamaterial-based elastoacoustic and electromagnetic energy harvesting, the combination
of structural configurations with metamaterials and wave propagation is essential for performance enhancement [35].

We also note that various researchers combined the wave propagation theory with the piezoelectric sensing/actuating
mechanisms to study passive and active structural health monitoring (SHM) systems [36–39]. For instance, the electrome-
chanical impedance technique for SHM utilizes traveling waves and the electrical impedance of a surface-bonded PZT trans-
ducer to obtain the change in the electromechanical impedance signature of the structure and detects the structural damage
bymonitoring this change [40–43]. In various SHM applications, researchers utilized ultrasonic waves such as Rayleigh sur-
face waves and Lamb modes [36,44,45]. In these studies, the focus has been either only on the forward problem to excite
thesewavesmore efficiently, or to sensewith small size piezo patcheswhere the important factor is signal to noise ratio, not
efficiency of energy transfer. In those cases, for example, the effects of piezo patch electrical impedance and load termination
on the propagating wave amplitudes through backward coupling are not considered.

This work fully combines the bending waves and the piezoelectric theory in the wave energy harvester to investigate
the energy transfer from propagating wave energy in the structures to resistive and reactive electrical loads. As a specific
and tractable example, piezoelectric patches bonded to a slender thin beam are considered. Incident wave energy is
transformed into usable electricity while minimizing the traveling waves reflected and transmitted from the harvester
domain. Electroelastic models are developed for the harvester bonded to infinite and semi-infinite beams by implementing
the wave equation solution in the compatibility and equilibrium conditions at the harvester boundaries which are then
solved simultaneously with the coupled electrical equation yielding the amplitudes of the traveling waves and the voltage
response of the harvester. Hence, both electrical to mechanical and mechanical to electrical coupling problems are
simultaneously solved. This allows one to obtain harvested power and the harvester efficiency for different electrical loading
conditions and performance enhancement by wavelength matching, resistive–inductive circuits, and spatially localized
obstacles. Additionally, an energy-harvesting end condition in a semi-infinite beam is introduced tominimize the reflection
in the sense of creating ideally an anechoic boundary condition. The validity and application of the proposed model and the
performance enhancement methods are demonstrated with several experimental studies by using a long slender beam.

2. Electroelastic modeling

When a wave, propagating along a waveguide such as a beam, encounters discontinuity, it is reflected and transmitted
across that discontinuity [46]. As shown in Fig. 1, piezoelectric patches, symmetrically bonded to the top and bottom of a
thin beam, are the sources of the discontinuity. The reflected and transmitted wave properties can be obtained from wave
elastodynamics in the beam, as explained in Section 2.1. In Section 2.2, piezoelectric energy harvesting is combined with
the wave propagation theory, and the power flow to the electrical load through the piezoelectric patches is extracted. In
Section 2.3, a lumpedmass is introduced to the system in order to increase the energy harvested in the piezoelectric patches.
Finally, in the last section, the energy harvester is implemented at the end of the structure with a resistive–inductive circuit,
resulting in a multifunctional energy harvester which ideally realizes an anechoic boundary condition while converting all
incident elastic energy to electricity.
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Fig. 1. (a) Incident, reflected, and transmitted waves at discontinuities for parallel connection and (b) composite cross-section in the harvester region.

2.1. Bending waves in an infinite Euler–Bernoulli beam

The unforced bending wave equation for one-dimensional thin beam with constant cross-sectional area can be written
as

YI
∂4w(x, t)

∂x4
+ m

∂2w(x, t)
∂t2

= 0 (1)

where YI is the flexural rigidity of the beam, m is the mass per unit length, and w(x, t) is the transverse displacement.
This equation is based on the classical (Euler–Bernoulli) beam theory, which postulates that plane sections remain plane (by
neglecting shear distortion) and also excludes the rotary inertia effects. The complete complex solution for the homogeneous
problem can be obtained as

w(x, t) = (Ãe−jkbx + B̃ejkbx + C̃e−kbx + D̃ekbx)ejωt (2)

where kb = (ω2m/YI)1/4 is the bending wave number, ω is the frequency, and j is the unit imaginary number. The first
two terms on the right-hand side of Eq. (2) represent waves propagating in the positive and negative x directions at a
phase velocity of cb = ω/kb. The last two terms represent evanescent waves with exponentially decaying amplitudes with
distance. Thosewaves do not individually transport energy, but can be effective and should be consideredwhen the distance
between discontinuities is significantly smaller than the wavelength as this impacts the minimum patch size for practical
optimization of power transfer.

In the energy harvesting problem, two identical piezoelectric patches of length L and thickness hp are bonded (with a
negligible bonding layer) to top and bottom surfaces of the thin beam for energy harvesting, forming a symmetric structure
as shown in Fig. 1. As a result, the incident wave w+

i (propagating from the left end of the beam) is scattered, generating
various transmitted and reflected waves in three regions.

Based on Fig. 1, the incident, reflected and transmitted waves can be expressed as

w+

i (x, t) = Ãe−jkb1xejωt (3a)

w−

r (x, t) = (B̃1e+jkb1x + B̃2e+kb1x)ejωt (3b)

w+

t (x, t) = (C̃1e−jkb2x + C̃2e−kb2x)ejωt (3c)

w−

r2(x, t) = (D̃1e+jkb2x + D̃2e+kb2x)ejωt (3d)

w+

t2(x, t) = (Ẽ1e−jkb1x + Ẽ2e−kb1x)ejωt (3e)

where B̃1, C̃1, D̃1, Ẽ1 are the complex amplitudes of the propagating wave components while B̃2, C̃2, D̃2, Ẽ2 are the complex
amplitudes of the evanescent counterparts, and the+ and− superscripts indicate propagation in the+x and−x directions,
respectively.

The shear force Q and bending momentM are

Q (x, t) = −YI
∂3w(x, t)

∂x3
M(x, t) = −YI

∂2w(x, t)
∂x2

. (4)

The complex wave amplitudes are obtained by imposing the linear/angular displacement compatibility and force/
moment equilibrium conditions at x = −L/2 and x = L/2 and solving the resulting equations simultaneously [47]. With
the known complex wave amplitudes, the time averaged power flow in the beam at any position can be calculated by using

Pavg =
1
2
Re

−ẇ∗Q − θ̇∗M


(5)

where ẇ∗ is the complex conjugate of the velocity phasor and θ̇∗ is the complex conjugate of the angular velocity phasor [48].
When the evanescent fields are ignored, this expression converges to simpler expressions obtained for bending waves in
the literature [49].
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Also note that, in order to account for the mechanical losses in the system, structural damping can be introduced in the
model by attributing a complex elastic modulus to the material, Y ∗

s = Ys (1 + jη), where η is the structural damping factor,
which is generally much smaller than unity [47]. When this complex elastic modulus is substituted in Eq. (1), the solution of
the homogeneouswave equation gives a complex bendingwave number which can be approximated by k∗

b = kb (1 − jη/4).

2.2. Piezoelectric energy harvesting from one-dimensional bending waves

Energy harvesting is accomplished when the piezoelectric patches with electrodes are connected to a finite, non-
zero electrical load, Zl (ω) (which may have purely resistive or resistive–reactive components [50,51]). In this study,
the harvesting model applies to both parallel and series connections of piezoceramic layers for the symmetric bimorph
configuration. In Fig. 1, the parallel connection is shown (see Appendix for the equivalent representations of the series
connection of piezoceramic layers). The x, y, and z directions are coincident with the 1, 2, and 3 directions (conventionally
the poling direction is the 3-direction). The bending moment can be written for the piezoelectrically coupled configuration
as [3]

M(x, t) = b


−hs/2

−hp−hs/2
T p
1 zdz +

 hs/2

−hs/2
T s
1zdz +

 hp+hs/2

hs/2
T p
1 zdz


(6)

where b is the width, and hp and hs are the thicknesses of the piezoceramic and substructure layer, respectively. Hereafter,
the subscripts and superscripts p stand for the piezoceramic layers and s stands for the substructure layer. Furthermore,
T p
1 and T s

1 are the stress components (in x-direction) in the piezoceramic and substructure layers, respectively. These stress
components can be written as follows:

T p
1 = c̄E11S

p
1 − ē31E3, T s

1 = YsSs1 (7)

where c̄E11 is the elastic modulus of piezoceramic at constant electric field, ē31 is the effective piezoelectric stress constant,
and Ys is the elasticmodulus of the substructure, Sp1 and Ss1 are the axial strain components (S1(x, z, t) = −z(∂2w(x, t)/∂x2))
and E3 is the electric field component in z-direction. The piezoceramic layers are assumed to be identical; hence, the voltage
across the electrodes of each piezoceramic layer is v(t) in the parallel connection case. Since ē31 has the same sign in both
layers, the instantaneous electric fields are in opposite directions for the parallel connection (i.e., E3(t) = −v(t)/hp in the
top layer and E3(t) = v(t)/hp in the bottom layer).

Substituting Eq. (7) into Eq. (6), the bending moment for the composite cross-section is obtained as

M(x, t) = −YI2
∂2w(x, t)

∂x2
+ χv(t) (8)

where YI is the flexural rigidity (bending stiffness) term of the composite cross-section under the short-circuit (or constant
electric field) condition [3] and χ is the backward coupling term (that accounts for the feedback effect of electrical domain
on the elastoacoustic domain), which can be defined as

χ =
bē31
hp


hp +

hs

2

2

−


hs

2

2


= 2bē31hpc . (9)

Here, hpc is the distance between the neutral axis and the center of each piezoceramic layer in the harvester region
(hpc =


hp + hs


/2).

For the composite cross-section, themoment equilibriumequations at the boundaries of the patch aremodified according
to the coupled mechanical equation, Eq. (8).

−YI1


∂2w+

i

∂x2
+

∂2w−
r

∂x2


x=−L/2

= −YI2


∂2w+

t

∂x2
+

∂2w−

r2

∂x2


x=−L/2

+ χv(t) (10)

−YI2


∂2w+

t

∂x2
+

∂2w−

r2

∂x2


x=L/2

+ χv(t) = −YI1
∂2w+

t2

∂x2


x=L/2

. (11)

When the piezoelectric patches are connected to a load impedance Zl(ω), which can consist of resistance and inductance,
the system becomes electromechanically coupled, resulting in a ninth unknown term, v(t) = Ṽ ejωt , voltage response of this
coupled system. The coupled electrical circuit equation (the ninth governing equation) for this system can be written as [3]

jωC eq
p Ṽ +

Ṽ
Zl(ω)

− Ĩp = 0 (12)
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Fig. 2. Piezoelectric energy harvesting from one-dimensional bending waves in the presence of a lumped obstacle.

where C eq
p is the equivalent capacitance of the piezoelectric patches in parallel connection due to two identical capacitors

(ε̄S
33bL/hp) connected in parallel.

C eq
p = 2ε̄S

33bL/hp. (13)

Here, ε̄S
33 is the permittivity component at constant strainwith the plane-stress assumption for the patch. In order to account

for dielectric loss tangent tan δ, complex permittivity can be used conveniently to give ε̄S
33 = ε̄S

33(1 − j tan δ), yielding a
complex capacitance expression. The dependent current source can be expressed as

ip(t) = Ĩpejωt
= −2ē31hpcb

 L/2

−L/2

∂3w2(x, t)
∂x2∂t

dx (14)

where w2(x, t) = w+

t (x, t) + w−

r2(x, t) is the total wave in the composite section. The amplitude of the current in Eq. (12)
can be obtained as Ĩp = −jωκ with κ being the forward coupling term (that accounts for the excitation of electrical circuit
by elastoacoustic waves), which can be extracted from Eq. (14) as

κ = 4kb2ē31hpcb


−


C̃1 + D̃1


sin

kb2

L
2


+


C̃2 + D̃2


sinh


kb2

L
2


. (15)

Therefore this set of equations fullymodel the forward and backward coupling in thiswave based electromechanical system.
Note that ignoring backward coupling and evanescent waves, Eq. (15) suggests that energy conversion will be effective at
oddmultiples of λ/2. This is an expected result as shown by others for A0 mode Lambwaves, but as will be shown later both
the backward coupling and evanescent waves are significant in determining optimal parameters for energy conversion [45].

After the complex wave amplitudes and voltage response are obtained by solving the coupled electroelastic system, the
time averaged electrical power flow into the electrical load can be calculated as

Peavg =

Ṽ 2
2Rl

. (16)

This expression along with Eq. (5) can be used to verify the power balance in the system, determine the power flow into the
harvester, and hence evaluate the efficiency of the energy harvester from the known input mechanical power to the system.

2.3. Harvester with a lumped obstacle

Piezoelectric energy harvesting from propagating bending waves on beams with an integrated symmetrical obstacle can
be modeled using the schematic shown in Fig. 2. The goal of this approach is to recover and harvest part of the transmitted
wave energy, which can also be interpreted as creating a spatially localized standing wave pattern. In the following, it is
assumed that the lateral extent of the obstacle is much smaller than the wavelength, and thus a lumpedmodeling approach
can be used.

When the transmitted wave (w+

t2) from the harvester is incident upon the obstacle, it gives rise to reflected (w−

r3(x, t) =

(F̃1e+jkb1x + F̃2e+kb1x)ejωt ) and transmitted waves (w+

t3(x, t) = (G̃1e−jkb1x + G̃2e−kb1x)ejωt ) for this additional discontinuity.
Wave amplitudes and the voltage response are obtained by imposing the linear/angular displacement compatibility and

force/moment equilibrium conditions at x = −L/2, x = L/2 and x = l and solving the resulting equations with the coupled
electrical circuit equation simultaneously. The same equations at x = −L/2 are still valid, while at x = L/2 reflected wave
from the obstacle (w−

r3) is added to the compatibility and equilibrium equations.
The linear/angular displacement compatibility and force/moment equilibrium conditions at x = l can be written as

w+

t2(l) + w−

r3(l) = w+

t3(l) (17a)
∂w+

t2

∂x
+

∂w−

r3

∂x


x=l

=
∂w+

t3

∂x


x=l

(17b)
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Fig. 3. Piezoelectric energy harvesting from one-dimensional bending waves using a harvester at the boundary of a semi-infinite beam.

YI1


∂3w+

t2

∂x3
+

∂3w−

r3

∂x3


x=l

= YI1
∂3w+

t3

∂x3


x=l

+ mo
∂2w+

t3

∂t2


x=l

(17c)

−YI1


∂2w+

t2

∂x2
+

∂2w−

r3

∂x2


x=l

= −YI1
∂2w+

t3

∂x2


x=l

+ Io
∂3w+

t3

∂x∂t2


x=l

(17d)

where mo is the total mass, and Io is the total mass moment of inertia of the lumped obstacle.

2.4. Harvester at the boundary of a semi-infinite beam: electromechanical anechoic boundary condition

The possibility of an anechoic boundary condition transforming all the incident mechanical power into electrical power
can also be investigated with the same approach. For this purpose, piezoelectric energy harvester is implemented at the
boundary of a semi-infinite structure, and harvesting of the propagating bending waves is modeled using the schematic
shown in Fig. 3.

In this case the linear/angular displacement and force/moment equilibrium conditions at x = −L/2 are still valid;
however, the conditions at x = L/2 are modified according to free end boundary conditions in which force and moment are
equal to zero.

Imposing compatibility and equilibrium conditions at the boundaries in the mechanical domain and solving the coupled
electromechanical equations, the time-averaged power flow in the beam and the time-averaged electrical power flowing to
the electrical load of the harvester are calculated using Eqs. (5) and (16), respectively.

3. Theoretical and experimental case studies

In this section three case studies are given to illustrate the application of the model and discuss its salient results.
Experimental validation of the simulation studies is also performed. For all the cases, a slender aluminum beam with
25.4 mm width and 1.6 mm thickness is used (ρs = 2700 kg/m3, Ys = 70 GPa). Note that the frequency range used in
the experiments is selected such that the Euler–Bernoulli beam theory yields accurate results by satisfying the condition
h/λ < 0.1 [52].

3.1. Simulation results

In the simulations continuous harmonicwave analysis is performed on the infinite and semi-infinite beams. The structure
is excited by an incident propagating wave with constant amplitude. The complex amplitudes of the transmitted and
reflected waves and the output voltage are obtained under different electrical loading parameters. In all case studies, the
system is assumed to be ideal, i.e. without any mechanical or electrical loss.

3.1.1. Case study I: energy harvesting on a uniform beam with resistive and resistive–inductive loading
In this case, a pair of piezoelectric patches with electrodes on each side of an infinite beam is connected to a complex

electrical load for energy harvesting as shown in Fig. 1(a). The piezoelectric energy harvester patches are made of PZT-5A
and they are 0.267 mm thick and 50.8 mm long.

The bending wave energy harvester is first evaluated by using a resistive load connected to the piezoelectric patch
terminals and the normalized output electrical power is calculated as a function of frequency for optimum resistive loads
in the 0–30 kHz range. The normalization is done by dividing the output power to the square of the incident displacement
amplitude (i.e. power output per meter squared). In Fig. 4(a), normalized electrical power is plotted against the wavelength
normalized length, L/λ. Examining the graph along with the phase velocity calculations shows that the power output
experiences a local minimum when L is close to a multiple of the wavelength, as expected. Note that the behavior is not
perfectly periodic in frequency due to the dispersive nature of the bending waves, i.e. the phase velocity being proportional
to

√
ω. The first peak, corresponding the L ∼ 3λ/4 results in the local maximum power and power output exhibits local

maxima at odd multiples of quarter wavelength, when L ∼ (2n + 1)λ/4, n = 1, 2, . . .
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a b

Fig. 4. Variation of (a) the harvested power and (b) the power conversion efficiency with normalized patch length under optimal resistive loading.
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Fig. 5. Variation of (a) the harvested power (mW/µ m2) and (b) the power conversion efficiency (%) with load resistance and normalized patch length for
resistive loading case.

As shown in Fig. 4(a), for constant incident displacementwave amplitude, themaximumpower increaseswith frequency
under optimal resistive loading because the incident power increases. Another useful metric for comparing different load
conditions is the efficiency of the energy harvester. In this case, the harvested power is normalized to themechanical power
of the incident wave (Eq. (5)). Fig. 4(b) shows the efficiency of the harvester as a function of normalized length. In this case,
the peaks occur when L is approximately an odd multiple of λ/2. This is expected as at higher frequencies where L is larger
than the wavelength, only the mechanical energy in the last λ/2 length of the patch is efficiently converted to electrical
domain, similar to the reduced coupling coefficient in higher order modes of piezoelectric resonators [53]. Also, it is seen
that, with the non-dimensional representation of the patch length, the efficiency plot reduces to a unified curve for different
patch lengths. Hence, once the frequency range for harvesting is determined, harvester dimensions can be chosen to work
efficiently at those frequencies as long as the resistor value is also chosen optimally.

The optimal load resistance can be identified through 3D plots of harvested power and conversion efficiency as a function
of resistance and normalized patch length. In Fig. 5(a) and (b), harvested power and power conversion efficiency are plotted,
respectively, in the 0–8 kHz range. In Fig. 5(a) the local maximum is obtained around Rl = 400 � at L ∼ 3λ/4 with minima
around frequencies where L is a multiple of wavelength. In Fig. 5(b) the corresponding plot for conversion efficiency is
shown, where the global maximum for efficiency is ∼4.6% for Rl = 900 � at L ∼ λ/2. In comparing Fig. 5(a) and (b), one
realizes that the maximum power peak shifts toward higher frequencies where L ∼ λ, since the input power increases with
frequency. In contrast, the conversion efficiency peak is at a lower frequency, roughly corresponding to the half wavelength
condition.

These results, essentially based on wavelength matching, are obtained by others through analyses which ignored
backward coupling (for example cf. Fig. 10 in [45] for A0 mode Lamb waves, which are similar to bending waves especially
at low frequencies). The impact of a full model for optimizing the efficiency of energy harvesting is more clearly seen when
complex conjugate electrical impedance matching is used [50,51,54]. For example, in the case of a capacitive source such
as the piezoelectric patch, one can achieve electrical impedance matching using an inductance in parallel with the load
resistance, so that the load impedance becomes

Zl(ω) =


1
Rl

+
1

jωLl + Rind

−1

(18)
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a b

Fig. 6. Variation of (a) the harvested power efficiency with normalized patch length under optimal resistive–inductive loading and (b) the corresponding
normalized inductance.

a b

Fig. 7. Variation of (a) the harvested power (mW/µ m2) and (b) the power conversion efficiency (%) with load resistance and normalized patch length for
parallel resistive–inductive loading case.

where Ll is the inductance and Rind is the internal resistance of the non-ideal inductor. Note that, in the simulations, all
components are assumed to be lossless (i.e. η = tan δ = Rind = 0), i.e. harvester characterization is performed under ideal
conditions.

Typically for maximum power transfer at a particular frequency the inductance value is chosen as Ll = 1/(ω2C eq
p ) to

eliminate the capacitive component of the impedance and the resistance value is varied as the free parameter. First set of
results in Fig. 6 shows the consequence of this approach, which provides 50% efficiency over a range of normalized patch
lengths, a significant improvement over the resistive case. However, by choosing both the inductance and resistance values
for complex conjugate matching of the impedance at the piezoelectric patch terminals, this range can be extended except
for a narrow region around L ∼ λ. This approach makes the optimal condition nearly independent of the patch length, and
effectively frequency, which means that high conversion efficiencies can be obtained with small piezo patches by adjusting
the electrical load. The inductance values rendering the maximum efficiency at different frequencies are normalized by
1/(ω2C eq

p ) as illustrated in Fig. 6(b). This graph shows that most probably the evanescent waves, especially effective at short
patch lengths and multiples of λ, contribute to the imaginary part of the electrical impedance changing the optimal tuning
inductance from 1/(ω2C eq

p ).
Following a similar analysis to the resistive load case, in Fig. 7(a) the normalized power output is plotted as a function of

resistance and non-dimensional wavelength under impedancematching conditions. It is seen that the peak frequency shifts
to the higher end of the frequency band, limited by the L ∼ λ condition. Fig. 7(b) shows conversion efficiency for the same
loading condition in which the maximum efficiency is limited to 50%, as expected from a passive, reciprocal 3-port device
with one conjugate matched port [55]. In this case, the impedance matched port is the piezoelectric patch terminals and
the mechanical port terminations are symmetrical. A simple analysis of the scattering matrix for this case indicates that the
rest of the mechanical power incident from the left side of the beam is equally reflected back (25%) and transmitted (25%)
to the other side of the patch.

It is noted that unlike energy harvesting applications from vibrations of finite structures with standing waves (i.e. modal
vibrations) which can be modeled with a simpler formulation and lends itself to Den Hartog’s invariant point concept to
obtain optimal loading parameters, in the case of wave energy harvesting the complexity of the problem prevents closed
form expressions for optimization even if only bending waves are considered [56].
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Fig. 8. Change in harvester efficiency via lumped mass under (a) resistive loading at 1.5 kHz, (b) resistive–inductive loading at 2.5 kHz, (c) normalized
evanescent wave amplitude versus wavelength.

3.1.2. Case study II: energy harvesting enhancement by using a lumped obstacle
As can be seen in Fig. 2, when a lumped obstacle is introduced, part of the bending wave energy is trapped between the

harvester and the lumped obstacle resulting in a variation of the harvested power. In this case study, a pair of rectangular
steel pieces (with 12.7 mm height, 3.175 mm length and 25.4 mmwidth) is considered as lumped mass (16 g) obstacle. The
same piezoelectric patches are implemented as the energy harvesting interface connected to the complex electrical load
with optimal parameters obtained for maximum efficiency.

Variation of the harvester efficiency by means of a lumped mass obstacle is simulated under resistive (at 2.5 kHz) and
resistive–inductive loading (at 1.5 kHz) cases with changing obstacle location in the transmitted wave domain. Fig. 8(a)
and (b) show the calculated variation of the conversion efficiency under continuous wave excitation with lumped mass
location normalized to wavelength λ at the excitation frequency for resistive and resistive–inductive loading, respectively.
As expected from standing wave patterns, the variation of harvester efficiency has regular maxima and minima with λ/2
periodicity. The harvester efficiency without the obstacle is constant at this frequency, and this value is also included in the
plots for comparison purposes. Hence, it can be concluded that the efficiency of the harvester can be increased dramatically
with the addition of the symmetric lumpedmass. The results also show that there is a distance limit belowwhich the optimal
conditions may not be achieved. This limit is ∼ λ/4, where evanescent fields are significant as shown in Fig. 8(c). The high
efficiency values close to zero mass distance would not be practical due to limited mass dimensions.

3.1.3. Case study III: multifunctional energy harvester—anechoic boundary condition
In this case study, the energy harvester patch is placed at one boundary of the semi-infinite structure to effectively

implement a multifunctional energy harvester which also realizes an anechoic boundary condition. The same material and
dimensional properties given in the previous case studies are used except for the length of the piezoelectric energy harvester.
In the simulations, 33 mm long patches are used as the energy harvesting interface bonded at the end of the beam. Thus,
high frequency harvesting is enabled in order to eliminate the limitations of the experimental setupwhichwill be explained
in Section 3.2.3.

The efficiency of the multifunctional harvester is obtained for different frequencies between 0 and 15 kHz under optimal
resistive–inductive loading basedon conjugate impedancematching. The efficiency versus normalizedpatch length is shown
in Fig. 9(a). Optimal loading parameters are obtained through 3D plots of conversion efficiency as a function of resistance,
inductance and normalized patch length, and plotted in Fig. 9(b). It can be observed that theoretically 100% efficiency can
be obtained at different frequencies by conjugate impedance matching. In practice the efficiency would decrease to some
extent due to parasitic losses as will be seen in the experimental results.

3.2. Experimental setup and results

In the experiments a pair of piezoelectric patches is used as the energy harvesting interface connected to a complex
electrical load (resistance and inductance). A long slender beam supported by soft foam at several locations is used as the
bending wave propagation medium and Laser Doppler Vibrometers (LDVs) are used to measure the incident, transmitted,
and reflected waves generated by a piezoelectric actuator as shown in Fig. 10. The LDV close to the actuator measures both
the incident and reflected waves from the harvester, while the second LDV measures transmitted waves passing through
the harvester.

In order to prevent spurious interference between reflected waves from the end of the beam and the propagating
waves in the harvester domain, the number of cycles of the input excitation to the piezoelectric actuator is limited.
Furthermore, the internal resistance of the inductance box, structural damping factor, and dielectric loss of the piezoelectric
patches are included in the experimental analysis. The structural damping factor is identified for each frequency through
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a b

Fig. 9. Variation of (a) the harvested power efficiency with normalized patch length under optimal resistive–inductive loading and (b) the power
conversion efficiency with load resistance and normalized patch length for parallel resistive–inductive loading case.

Fig. 10. Experimental setups: (a) Case study I with no lumped obstacle, (b) case study II with lumped obstacle case, and (c) case study III with energy
harvester at one boundary.

separate experiments by taking two simultaneous LDV measurements at known distances of freely propagating waves and
considering the power levels. A constant dielectric loss is extracted from the difference between themeasured and calculated
output voltage signals. As a result, the structural damping factor in the beam is taken as 0.0025 at 1.5 kHz and the dielectric
loss in the piezoelectric patch is taken as 2% (accounting for the dielectric loss caused by the epoxy layers) in the calculations.

3.2.1. Case study I: resistive and resistive–inductive loading with no obstacle
The experimental setup shown in Fig. 10(a) is first used to test the validity of the results from Section 3.1.1. Using the

LDV signal for the incident wave, the waveforms for the output voltage, transmitted and reflected velocity are calculated via
transient analysis with the theoretical frequency domain transfer function and compared with the measured waveforms.
For instance, the voltage output is calculated by inserting the measured incident velocity in the following formula:

V (t) = IFFT

FFT {Velocityinc(t)} × G (ω) × e−jkb1(ω)L (19)

where G(ω) is the theoretical transfer function between the incident velocity and the voltage response, kb1 is the theoretical
wavenumber and L is the distance between the harvester and LDV location.

The center frequencies of the signals used for comparison are selected to correspond to the maximum power and
efficiency based on Figs. 4 and 5. For example, at 1.5 kHz where L ∼ 0.8λ 900 � resistance is found and used as the
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Fig. 11. Comparison of the theoretical and experimental voltage response and transmitted and reflectedwave behaviors alongwith themeasured incident
waves under (a) resistive loading at 1.5 kHz and (b) resistive–inductive loading at 2.5 kHz (solid curves: measured; dashed curves: calculated).

optimal resistive loading. Similarly, at 2.5 kHz where L ∼ 0.5λ 8 k� resistance and 35 mH inductance (with 13.2 �

internal resistance) is used for optimal resistive–inductive loading. Fig. 11 shows the results comparing measured and
calculated results for the resistive and resistive–inductive loading case the left and right columns, respectively. The top
row of Fig. 11 shows the measured incident wave LDV signals. The calculated output voltage waveforms (second from
the top row) and transmitted waveforms perfectly match the measurements. Note that the voltage and power levels
obtained for resistive–inductive loading are significantly higher than resistive loading as expected from the simulations. The
reflected velocity waveforms agree reasonably well with the measurements considering the low signal levels as compared
to transmitted waves.

For further validation, the experiments are repeated under optimal loading conditions for different frequencies between
500 Hz and 8 kHz. Harvested power is obtained by dividing the power spectral density (PSD) value of the piezoelectric
voltage response at the harvesting frequency by the load resistance. Similarly, average power carried in the incident wave
is calculated by multiplying the PSD of the incident wave packet with YI1k3b1/ω resulting from Eq. (5). Fig. 12 shows the
comparisons of harvested power and efficiency under optimal resistive and resistive–inductive loading conditions. As
can be seen in Fig. 12(a), the experimental maximum power is around 3 kHz for resistive loading and 4.5 kHz for the
resistive–inductive loading, similar to predictions. Furthermore, experimental maximum efficiency is 4.5% at 1.5 kHz and
26% at 2.5 kHz for resistive and resistive–inductive loading, respectively (Fig. 12(b)). Note that the decrease in themaximum
efficiency from 31% (including the inductance loss) to 26% is because of the effect of mechanical and dielectric losses in the
system. Despite the discrepancies in themeasured and calculated efficiency and power output levels (arising from the slight
differences in the wave packets), the experiments at different frequencies can be considered in satisfactory agreement with
the simulations. These results along with the waveform comparisons validate the proposed bending wave energy harvester
model.

3.2.2. Case study II: power enhancement by using a lumped obstacle
The setup in Fig. 10(b) with the same piezoelectric energy harvester is used to test the validity of the theoretical model

for energy harvesting improvement with lumped obstacles. In Fig. 13, efficiency versus normalized lumped mass position
is plotted for optimal resistive and resistive–inductive loading cases at 1.5 kHz, and 2.5 kHz, respectively. The lumped mass
is located in 5 mm increments in the transmitted wave domain. Note that the appearance of maximum peaks with λ/2
periodicity, the significant difference in efficiency with inductive–resistive loading and the asymmetric variation of the
efficiency as compared to no-obstacle case all agree very well qualitatively with the predictions in Fig. 8. Transient analysis
comparisons in Fig. 14 also showexcellent agreementwith respect to the shape of thewaveforms and signal levels. The effect
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Fig. 12. Comparison of the theoretical and experimental (a) maximum power and (b) maximum efficiency with the optimal parameters of resistive and
resistive–inductive loading.

a b

Fig. 13. Experimental power enhancement via lumped mass under (a) resistive loading at 1.5 kHz, (b) resistive–inductive loading at 2.5 kHz.

a b

Fig. 14. Comparison of the theoretical and experimental voltage response along with the measured incident waves under (a) resistive loading at 1.5 kHz,
(b) resistive–inductive loading at 2.5 kHz (solid curves: measured; dashed curves: calculated).

of evanescent waves for small normalized mass obstacle distances are also observed qualitatively as the periodic curves are
distorted as the distance is reduced below 0.2λ.

3.2.3. Case study III: multifunctional energy-harvesting quasi-anechoic boundary condition
The multifunctional energy harvester concept (Fig. 10(c)) analyzed in Section 3.1.3 is also experimentally tested. In

contrast with the ideal lossless case leading to 100% harvester efficiency, a lower figure is expected due to losses such as the
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Fig. 15. Comparison of the theoretical and experimental voltage response and reflected wave behaviors along with the measured incident waves: (a)
Transient analysis and (b) PSD analysis (solid curves: measured; dashed curves: calculated).

internal resistance of the inductance box, mechanical loss in the system and the dielectric losses in the harvester. Therefore,
instead of a 100% efficient anechoic boundary condition, a quasi-anechoic boundary condition performance is expected. In
order to avoid the interference of the incident wavewith the reflected wave, the harvester is tested at a higher frequency (at
7.95 kHz) with 5 cycles of burst excitation. For electrical loading, the optimal parameters for this particular frequency are
used (Rl = 4 k�, L = 5 mH and Rind = 3.4 �), and LDV measurement at a single location is used to record the incident and
reflected waves. Fig. 15(a) shows the comparison of the calculated and measured incident wave amplitude, the harvester
output voltage and the reflected wave amplitude. In addition to showing excellent agreement, the notch in the reflected
waveform shows that the harvester is effectively anechoic at a certain frequency contained in this wavepacket.

The particular anechoic frequency is much better delineated by the PSD analysis shown in Fig. 15(b). The incident wave
has a range of frequencies in the 7–9 kHz range due to the tone-burst excitation. As a result, the reflected wave includes
those frequencies. However, the reflection is clearly minimized at the targeted frequency of 7.95 kHz with optimal loading
conditions. Calculations including the losses in the system predict a power reflection coefficient of 5.7% at this frequency,
which agrees very well with the measured 6%. In terms of harvester performance, calculations show that at this frequency,
the addition of the internal loss of the inductor reduces the efficiency to 82%. Inclusion of mechanical and dielectric losses
in the system further reduces the efficiency to 36% which compares very well to the measured efficiency of 32%.

4. Conclusions

In this paper an electroelastic modeling framework is proposed for a piezoelectric energy harvester exploiting one-
dimensional bending waves propagating in infinite and semi-infinite beams. The fully coupled model that accounts for
piezoelectric structure and complex electrical load is based on thewave equation solution and the piezoelectric constitutive
relations coupled in the equilibrium and compatibility conditions at the harvester boundaries and the electrical circuit
equation. The model is used to obtain the time averaged power flow in the beam and the time-averaged electrical
power flowing to the harvester as well as the efficiency of the harvester. With the simulation case studies, wavelength
matching, resistive and resistive–inductive circuits, and performance enhancement by a localized obstacle are explored. A
substantial performance enhancement is observed in ideal conditions by resistive–inductive loading as compared to the
resistive loading case with more than an order of magnitude increase in the maximum power output and from 4.5% to 50%
improvement in the maximum efficiency over a larger frequency range. In the case of power enhancement method with
spatially localization of a lumped obstacle, the harvested power is almost doubled by properly locating the obstacle with
respect to the harvester and the maximum efficiency of 95% is obtained under resistive–inductive loading. Additionally, a
multifunctional piezoelectric energy harvester—anechoic boundary condition is proposed, in which nearly all the energy
in a propagating bending wave can be extracted using piezoelectric patches at the free end of a beam. The harvester is
tested under these different configurations, and the proposed work is validated with the experiments. Through transient
and power analyses, the experimental and theoretical results are compared and an excellent agreement is observed. Due to
the losses in the system, harvester efficiency decreases to 26% for resistive–inductive loading and 45% efficiency is obtained
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Fig. A.16. (a) Incident, reflected, and transmitted waves at discontinuities for series connection and (b) composite cross-section in the harvester region.

with the lumped mass addition. On the other hand, in the anechoic boundary condition experiments, a 6% power reflection
ratio is obtained, resulting in quasi-anechoic behavior, which is very promising for achieving an energy-harvesting boundary
condition that minimizes the reflections. These enhancement methods are most effective and practical when piezoelectric
patch lengths and obstacle to patch distances are ∼>λ/4, where evanescent fields become insignificant, while the model
can readily accommodate the presence of evanescent waves for arbitrary patch lengths. While the present effort explored
electroelastic dynamics of bendingwaves in an infinite/semi-infinite beam shunted to an AC circuit (with linear resistive and
reactive components for linear impedancematching), futureworkmay investigate nonlinear energy harvesting circuitswith
standard AC–DC conversion [57,58], switching circuits [59,60] for boosted power output in case of weak electromechanical
coupling, as well as nonlinear impedance matching circuits [51].

Acknowledgment

This work was supported in part by the National Science Foundation under Grant No. CMMI-1333978.

Appendix

In the series connection case, the voltage across the electrodes of each piezoceramic layer is v(t)/2 [3] (see Fig. A.16),
and due to opposite poling in the series connection, the instantaneous electric fields are in the same direction (i.e., E3(t) =

−v(t)/2hp for both layers). Substituting Eqs. (7) into Eq. (6), the backward coupling term in Eq. (8) is obtained

χ =
bē31
2hp


hp +

hs

2

2

−


hs

2

2


= bē31hpc . (A.1)

The equivalent capacitance of two identical capacitors (ε̄S
33bL/hp) connected in series is

C eq
p = ε̄S

33bL/2hp. (A.2)

Then, it is substituted into the electrical circuit equation given in Eq. (12). The expression of the dependent current source
for the series connection is

ip(t) = Ĩpejωt
= −ē31hpcb

 L/2

−L/2

∂3w2(x, t)
∂x2∂t

dx (A.3)

and the amplitude of the current in Eq. (A.3) can be obtained as Ĩp = −jωκ with κ being the forward coupling term, which
is

κ = 2kb2ē31hpcb


−


C̃1 + D̃1


sin

kb2

L
2


+


C̃2 + D̃2


sinh


kb2

L
2


. (A.4)

Note that, series connection is preferred for large voltage output, whereas parallel connection is preferred for large
current output [3]. Both series and parallel connection configurations yield the same power output levels under optimal
loading conditions which differ due to different equivalent capacitances of the two configurations. In this study, the focus
is on the harvested power and the piezoelectric patches are connected in parallel in the experiments. However, we provide
both configurations for the completeness of the study.
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